SOLID-STATE CHEMISTRY OF THIO-, SELENO-, AND TELLUROHALIDES OF REPRESENTATIVE AND TRANSITION ELEMENTS

J. FENNER,* A. RABENAU, and G. TRAGESER

Max-Planck-Institut für Festkörperforschung, Stuttgart, West Germany

1.	Introduction		•	•	٠	•		٠	٠	•	٠	•	٠	٠	٠	•	•	•	•	•	331
II.	Group IB			,						,											332
	A. Copper .																				332
	B. Silver																				338
	C. Gold																				342
	D. Miscellane	ous	.																		348
III.	Group IIB .																				351
	A. Zinc and C	ad	mi	um	١.																351
	B. Mercury.																				351
IV.	Group IIIB an	d L	an	th	an	ide	s.														357
	Group IVB .																				364
	Group VB .																				364
	Group VIB .																				370
	A. Chromium																				370
	B. Molybdenu	ım																			370
	C. Tungsten																				377
VIII.	Group VIIB.																				379
	A. Manganese																				379
	B. Rhenium																				379
IX.	Group VIIIB																				381
	Group IIIA .																				382
	A. Boron																				383
	B. Aluminum		,																		383
	C. Gallium.																				384
	D. Indium .																				386
	E. Thallium																				388
XI.	Group IVA .																				389
	A. Carbon, Sil																				389
	B. Tin																				390
	C. Lead																				396

 $[\]mbox{*}$ Present address: Th. Goldschmidt AG, Goldschmidtstrasse 100, D-4300 Essen 1, West Germany.

XII.	Group VA									400
	A. Nitrogen and Phosphorus									400
	B. Arsenic									401
	C. Antimony and Bismuth .									402
	Appendix									412
	References									
	Appendix References									425

I. Introduction

The aim of this review is to discuss the modern, solid-state chemistry of members of a well-defined class of compounds with respect to their preparative methods, structural features, and physical properties. The thio-, seleno-, and tellurohalides of the metallic elements seem to be well suited for this purpose. In contrast to such binary compounds as oxides and halides, they fit into the frame of the restricted space available, and, with the exception of alkaline and alkaline-earth elements, examples are found in all groups of the periodic system. The large group of oxyhalides, as well as the chalcogenide fluorides, have been excluded. Oxyhalides have been extensively reviewed (182, 405), and the properties of the fluorides are closely related to this group; in addition, the behavior differs in some respects from that of the chalcogenide halides treated here. A typical feature of the compounds under consideration is that of nonstoichiometry (54, 296). Besides, they may have a complicated, overall composition, due, for instance, to metalmetal bonds, and they may exhibit a broad range of existence over many mole percent, and, within such a phase width, the chemical potential of an elementary component can vary over powers of ten (54, 298). On the other hand, the numerous addition compounds and adducts, such as K2TeBr6, TeCl4·AlCl3, SnCl4·SCl4, and most molecular structures will not be treated.

As regards organization, the indicated compounds of the elements are discussed separately, or in groups as subdivisions of sections devoted to the different groups of the Periodic Table. Usually, after introductory remarks covering, if necessary, the historical background, the preparative methods are described, including the growth of single crystals. This topic becomes more and more important because of the need not only for small crystals for structure determinations but also for large crystals of high purity for the evaluation of physical properties. A number of preparative methods typical for solid-state chemistry and crystal-growth techniques are mentioned in the text, such as vapor growth, including chemical transport reactions (Section VI,5), hy-

drothermal syntheses (Section II,D,2), and melt growth techniques such as Bridgman-Stockbarger, flux, and others.

In the succeeding discussion, the chemical behavior of the respective compounds is given. An important role is played by the phase relationships in the respective systems, as they are a prerequisite not only for efficient crystal growth but also for the discussion of the thermodynamic properties. Among the crystallographic data, the occurrence of metal-metal bonds within the transition-element compounds, especially those of groups VB and VIB, should be mentioned, as these lead to the formation of metal clusters as building units of the structures. Almost the whole spectrum of physical properties, not only playing a role in modern, solid-state physics, but also of technical importance, is found among chalcogenide halides. Ionic conductors, which can be used as solid electrolytes in primary and secondary batteries (Section II.D.1), exist among the copper compounds. Semiconductors, among which are the group VA compounds of the SbSI type, play an important part, as these photoconductors exhibit ferroelectric, piezoelectric, nonlinear optical, electromechanical, and other properties. In this group, especially among the arsenide halides, are also found the vitreous semiconductors. Among the metallic conducting phases, such cluster compounds as Mo₆S₆Br₂ (Chevrel phases) are superconductors having extremely high, critical fields (Section VII,B.5).

Although chalcogenide halides are mentioned in the literature as early as the end of the last century, this class of compounds has excited growing interest in the scientific world during the past three decades only, as documented by the fact that, during the preparation of this article, two reviews of thio-, seleno-, and tellurohalides appeared (8, 320) that were, however, restricted to transition-metal compounds and to somewhat different aspects. The current literature will be cited as comprehensively as possible, with some exceptions, however, as, for instance, of the group VA compounds, where a discussion of the growing literature on the physical properties would exceed the scope of this article; the same applies to compounds of mercury. The older literature will be only partially mentioned, as the existence of many compounds is not well established at this time, and their inclusion would lead to some confusion. In such cases, we have referred to the respective volumes of Gmelin's famous "Handbook of Inorganic Chemistry." The reader interested in more-detailed information may readily find his way via the many references to the topic of interest.

The authors trust that one or more readers may even be stimulated, and start personal research-work in the many unexplored fields of this interesting class of compounds.

II. Group IB

A. Copper

Despite the tremendous amount of work on the binary compounds, copper chalcogenide halides were first reported in 1969 (304). Nine compounds of selenium and tellurium have been found, and they are listed in Table I. Copper sulfide halides are still unknown.

1. Preparative Methods

In polycrystalline form, the compounds are obtained by annealing stoichiometric amounts of the respective copper(I) halides with Se $(T=300^{\circ}\mathrm{C})$ and Te $(T=350^{\circ}\mathrm{C})$ in closed ampoules for some days. After grinding, the reaction product has to be treated once more in the same way (307), in order to complete the reaction. In some cases, small single crystals for X-ray measurements may also be isolated (125). Small single crystals of all chalcogenide halides may be obtained by hydrothermal synthesis in the respective halogen hydracids (300) (see Section II,D,2). The synthesis of copper chalcogenide halides by chemical-transport reactions (336) has been reported (63,65). Large crystals of CuTeBr (5) and CuSe₃I (122) have been obtained by the Bridgman–Stockbarger technique (55) (see Fig. 34).

2. Chemical Properties

Crystals of all of these compounds are stable in air and in alkaline solutions, and dissolve quickly in hot, conc. HNO₃ and H₂SO₄, the selenium compounds also dissolving in hot, alkaline solutions (307).

3. Phase Diagrams and Thermodynamics

The system $\text{CuCl-Cu}_2\text{S}$ is of the simple, eutectic type (394, 400), whereas the systems CuX-Se and CuX-Te (X = Cl, Br, or I) are pseudobinary cuts in the ternary diagram Cu-X-Se (Te) and show one (Se) and two (Te) intermediate compounds (308) (see Fig. 1). Both congruent and incongruent ternary phases are found, as shown in Fig. 2 for the system CuBr-Te (299). CuTeBr exhibits a first-order, displacive phase-transition with ΔH_u and ΔS_u of only 76.8 cal/g-mol and 0.222 cal/g-mol·K, respectively (5). Single crystals therefore retain their crystallinity during transition. This phenomenon is of interest, in that it allows the investigation of physical properties during the transition in a single-crystal specimen (70). The vapor above the copper se-

TABLE I
COPPER CHALCOGENIDE HALIDES

Compound	Symmetry	а (Å)	<i>b</i> (Å)	с (Å)	β (degrees)	Z	Structure ref.	Decomposition or melting point (°C)
CuSe ₂ Cl	Monoclinic	7.724	4.655	14.573	134.96	4	433	319
CuSe ₃ Br	Orthorhombic	14.363	4.488	7.696		4	424	338
$CuSe_3I$	Rhombohedral	14.083°		14.187^a		18		394
CuTeCl	Tetragonal	15.63		4.78		16	<i>123</i>	400
CuTeBr	Tetragonal	16.417		4.711		16	63,64	430
	Orthorhombic ^b	23.22	23.22	14.13		96		
CuTel	Tetragonal	17.170		4.876		16	125	442
	Orthorhombic ^o	24.258	24.292	14.611		96	123,126	
CuTe₂Cl	Monoclinic	8.207	4.935	15.279	134.92	4	120	~420
CuTe ₂ Br	Monoclinic	8.358	4.951	15.704	135.1	4		416
CuTe₂I	Monoclinic	8.672	4.881	16.493	135.0	4		400

 $[^]a$ For the hexagonal cell. b For the superstructure.

Fig. 1. Chalcogenide halides in ternary systems having the components: the Group IB elements Cu, Ag, and Au, the chalcogens S, Se, and Te, and the halogens Cl, Br, and I. They are indicated as M¹, Y¹¹, and X¹¹Ӏ, respectively. (Redrawn from A. Rabenau, H. Rau, and G. Rosenstein, J. Less-Common Metals 21, 395 (1970), Fig. 4, p. 401.)

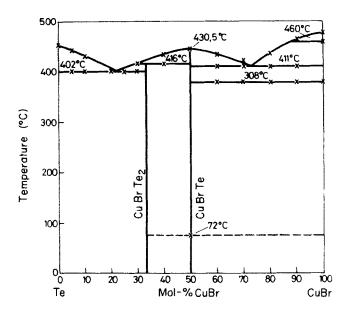


Fig. 2. Phase diagram for CuBr-Te.

lenium halides consists exclusively of selenium and p_{Se} , can be measured by using the effusion method. From these data, the free energy of reaction can be calculated (307).

$$CuCl,c + 2 Se,c = CuClSe_2,c; \Delta G^\circ = -1800 + 2.3 T cal/mol$$
 (1)

$$CuBr,c + 3 Se,c = CuBrSe_3,c; \Delta G^{\circ} = -3100 + 4.0 T cal/mol$$
 (2)

CuI,c + 3 Se,c = CuISe₃,c;
$$\Delta G^{\circ}$$
 = +1900 - 3.9 T cal/mol (3)

Due to the high heats of formation of the binary components, these small values seem to be representative for most of the chalcogenide halides discussed in this article.

4. Crystallographic Data

For crystallographic data, see Table I. The compounds of the type CuTeX and CuTe₂X (X = Cl, Br, or I), respectively, are isotypic, and their crystal structures have been determined. Copper has the oxida-

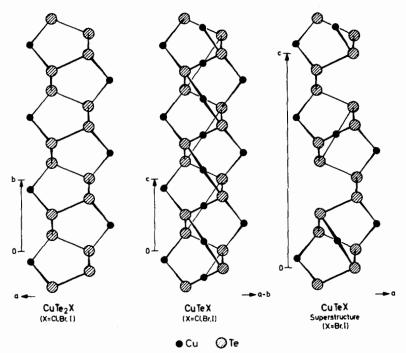


Fig. 3. Tellurium helices in copper telluride halides. (Redrawn from J. Fenner and H. Schulz, Acta Cryst. B35, 307 (1979), Fig. 2, p. 311.)

			TABLE	11				
OCCUPATION	PROBABILITIES	OF THE	COPPER	Атоміс	SITES	IN	CuTeX	Compounds

		Occupation probabilities								
Atomic site	Number of equivalent positions	CuTeI	CuTeBr (20 °C)	CuTeBr (100 °C)	CuTeCl					
Cu(1)	8	0.34(1)	0.26(1)	0.35(2)	0.42(1)					
Cu(2)	8	0.23(1)	0.19(1)	0.14(2)	0.07(2)					
Cu(3)	16	0.52(1)	0.51(1)	0.60(1)	0.66(1)					
Cu(4)	16	0.20(1)	0.26(1)	0.15(1)	0.08(1)					

tion state +1, and is tetrahedrally surrounded by either four halogens, or two halogens and two telluriums. The main feature of these structures is infinite, pseudofourfold, tellurium helices, symmetry-related by crystallographic screw axes (see Fig. 3). These infinite, Te-Te bonds have only been found in cases where the formal oxidation state of tellurium lies between zero and unity, as in elemental tellurium (72) and the tellurium subhalides (188). In the CuTeX compounds, the copper atoms are distributed statistically over several crystallographic positions. This is the reason for the observed high copper ionic conductivity (4). The occupation probability of the copper sites is similar in CuTeBr and CuTe I (see Table II). These two compounds show a superstructure having a partial ordering of the occupation probabilities of the copper atomic sites (126). In the case of CuTeBr, this superstructure disappears with the phase transition at 72°C, and the occupation probabilities become similar to those of CuTeCl (123), as shown in Table II.

5. Physical Properties

All of these compounds exhibit a temperature-independent diamagnetism, as is to be expected for compounds of monovalent copper; this is of the same order of magnitude as for copper(I) halides (307). Spectral-reflectance measurements are presented in Fig. 4, a-c. Here, the logarithm of the reciprocal relative reflectance is plotted against photon energy (306). The steep increase above the level of the residual absorption is correlated with the band gap. In the case of the isotypic compounds CuTeX and CuTe₂X, the substitution of the halogen seems to have no significant influence on the band gap, as may be seen from Fig. 4, a and b, respectively. This result confirms a concept developed by Goodman (149) that, in the case of substitutional derivation (within a given structure), the energy gap should be determined by the weakest bond in the lattice, largely in terms of bond-electronegativity differ-

ence. This decreases in the sequence Cu-Cl, Cu-Br, Cu-I, and Cu-Te, the weakest bond being the Cu-Te. This principle no longer holds if the stoichiometry and the structure change (see Fig. 4c). The compounds of the type CuTeX show a high partial, Cu⁺-ionic conductivity at rather low temperatures, with a negligible electronic contribution

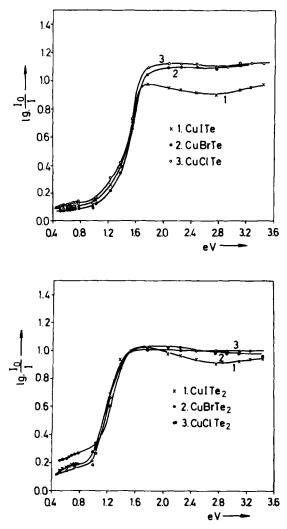
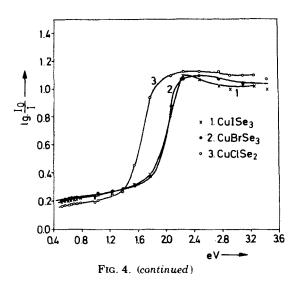



Fig. 4. Spectral reflectance measurements in copper telluride halides. (Redrawn from A. Rabenau, H. Rau, and G. Rosenstein, *Solid State Commun.* 7, 1281 (1969), Fig. 1, p. 1281.)

(4, 299, 430). The ionic conductivity is much higher than in the corresponding copper halides (see Fig. 5). At temperatures above 250°C, they enter the region of optimized ionic conductors (150).

B. SILVER

The possible existence of a silver sulfide bromide was suggested from the results of conductivity measurements of aqueous Ag₂S-AgBr mixtures, in 1955 (360). The compounds Ag₃SBr and Ag₃SI were first prepared by Reuter and Hardel in 1960 (315). The interest in these materials was stimulated by the discovery of their high ionic conductivity (316, 317, 319, 370). Little is known about the three other silver chalcogenide halides Ag₃TeBr (46, 49, 180), Ag₆TeBr₄ (180), and Ag₅Te₂Cl (46, 49, 53), which need further investigation. It is remarkable, however, that all of the silver chalcogenide halides lie on a cut formed by the respective silver(I) halide and silver(I) chalcogenide (see Fig. 1).

1. Preparative Methods

The sulfide bromide Ag_3SBr may be obtained by annealing of stoichiometric amounts of Ag_2S and AgBr in closed, glass ampoules at 280°C. The reaction product is ground, and repeatedly treated in the same way (317); the end of the reaction is determined by powder patterns. In a similar way, the low-temperature modification of Ag_3SI , β -

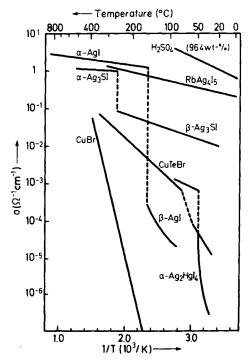


Fig. 5. Ionic conductivity of Group IB compounds.

Ag₃SI, is prepared at 210–215°C. In both cases, it takes several weeks to complete the reaction. The high-temperature modification α -Ag₃SI, which is stable above 235°C, can be obtained either by a treatment at 280°C instead of 210–215°C, as for β -Ag₃SI, or by annealing of the latter for some hundreds of hours at 280°C and quenching to room temperature (317). α -Ag₃SI forms in only 17 hours if the reaction takes place at 550°C under various sulfur pressures (370).

Ag₃TeBr and Ag₆TeBr₄ were obtained by heating the respective stoichiometric mixtures of Ag₂Te and AgBr for 250 hours at 560°C, cooling, and annealing for 1400 hours at 350°C. They were identified by X-ray powder patterns (180). Their existence needs further confirmation. A compound having the probable composition Ag₅Te₂Cl was obtained during the investigation of the Ag₂Te-AgCl system from Ag₂Te and AgCl (53). The samples were tempered for 480 hours at 330°C in closed ampoules. Ag₃TeBr and Ag₅Te₂Cl have been prepared in a similar way, just by annealing at 350°C for 480 hours (49). All of these compounds were reported to be of the peritectic type, which may explain the uncertainty of the data acquired.

2. Chemical Properties

The black Ag₃SBr decomposes above 430°C into Ag₂S and AgBr. β -Ag₃SI has the same color, and transforms to α -Ag₃SI at 235°C (317). The latter shows no signs of decomposition in DTA measurements up to 800°C (370); if, however, a temperature gradient is applied, decomposition starts below this temperature, by sublimation of AgI. Both compounds decompose slowly in light. In such complex-forming solvents as thiosulfate, thiocyanate, or cyanide, the respective silver halide is dissolved (317).

3. Crystallographic Data

The structures of Ag₃SBr, β -Ag₃SI, and α -Ag₃SI have been determined on the basis of powder pattern, by trial and error (318). Ag₃SBr and β -Ag₃SI are isotypic, and crystallize in a structure that can be derived from the ideal, antiperovskite structure by displacement of silver ions from the face centers in the direction of the edges of the unit cell (see Fig. 6). α -Ag₃SI crystallizes bcc, and is homotypic with α -AgI and α -Ag₂S. These structures differ in two points. (i) The corners and the center of the body-centered, cubic cell are occupied by 2 I in α -AgI (see Fig. 7), 2 S in α -Ag₂S, and statistically by 1 S and 1 I in α -Ag₃SI, respectively. (ii) Within the 12 tetrahedral voids of the packing of ions,

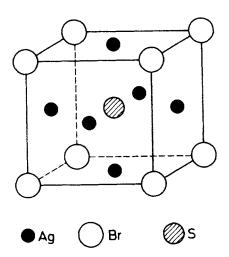
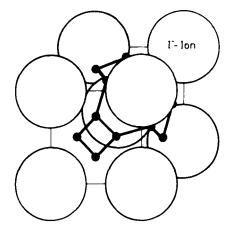



Fig. 6. Ideal antiperovskite structure of Ag₃SBr. (Redrawn from B. Reuter and K. Hardel, Z. Anorg. Allg. Chem. 340, 168 (1965), Fig. 1, p. 171.)

■ Ag* - lattice sites

Fig. 7. α-AgI structure, tetrahedral sites, and diffusion path of Ag+.

2 Ag in α -AgI (see Fig. 7), 3 Ag in α -Ag₃SI, and 4 Ag in α -Ag₂S are distributed statistically. No crystallographic data are available for silver telluride halides.

4. Phase Diagrams

Stimulated by the search for optimized ionic conductors, phase-diagram investigations of silver(I) halide-silver(I) chalcogenide systems are numerous (see Table III). The phase diagrams for AgX-Ag₂Y (X = Cl, Br, and Y = S, Se Te) are summarized in Fig. 8. They are quasibinary cuts of the eutectic and peritectic type, respectively (46, 47, 49). As indicated by the dashed lines, not everything is yet clarified. The compound Ag₃SBr dissolves up to 20 mol-% of Ag₂S (317). According to Karbanov et al. (180), the system AgBr-Ag₂Te is not a quasibinary one, and the occurrence of a second ternary compound having the composition Ag₆TeBr₄ was claimed. These authors also found a high solubility of AgBr in Ag₂Te at ~500°C. The discrepancies have to be clarified (46). Whereas, in the system AgI-Ag₂S near room temperature, β -Ag₃SI is the only stable compound, which forms solid solutions containing up to 20 mol-% of Ag₂S, similar to Ag₃SBr, a very complicated phase-diagram was reported for temperatures above

¹ In contrast to the established concept, it has been found that, in α -AgI, silver is exclusively distributed on the tetrahedral voids (135, 69); it may be assumed that the same holds for α -Ag₃SI and α -Ag₂S.

TABLE III Investigations of the Ternary Diagrams of Ag- X^{vii} - Y^{vi} (X = Cl, Br, or I; Y = S, Se, or Te)

System	Ref.	System	Ref.	System	Ref.
AgCl-Ag ₂ S	46,47	AgBr-Ag ₂ S	46,47,317	$\begin{array}{c} AgI-Ag_2S\\ AgI-Ag_2Se\\ AgI-Ag_2Te \end{array}$	46,47,317,372,373
AgCl-Ag ₂ Se	46,49,52	AgBr-Ag ₂ Se	49,52		369
AgCl-Ag ₂ Te	46,49,53	AgBr-Ag ₂ Te	46,49,180		46,369

100°C (373), with additional ternary phases at 25 and 75 mol-% of Ag₂S, respectively, which decompose at room temperature to AgI + Ag₃SI + Ag₂S, respectively. The situation around the composition Ag₃SI is given in ref. (372). In the pseudobinary AgI-Ag₂Se system, no compound was found at any temperature or composition (369). The diagram shows a peritectic, reaction isotherm at 635°C, the peritectic composition being 45 mol-% of Ag₂Se. The same situation was proposed for the system AgI-Ag₂Te (369), with values of 560°C and 30 mol-% of Ag₂Te, respectively. Complete solubility was found between Ag₃SBr and β -Ag₃SI by X-ray measurements (317).

5. Physical Properties

Ag₃SBr, β -Ag₃SI, and α -Ag₃SI are cationic conductors due to the structural disorder of the cation sublattices. Ag₃SI (see Fig. 5) has been discussed for use in solid-electrolyte cells (209, 371, 374, 414–416) because of its high silver ionic conductivity at rather low temperatures (see Section II,D,1). The practical use seems to be limited, however, by an electronic part of the conductivity that is not negligible (370), and by the instability of the material with respect to loss of iodine (415).

C. Gold

Gold telluride iodide, AuTe₂I, was the first example of a gold chalcogenide halide, and was found in 1969 (305). Systematic investigations confirmed the existence of at least six compounds: four telluride halides and two selenide halides (see Table IV). No sulfide halides have been reported.

1. Preparative Methods

The four tellurium compounds are obtained as polycrystalline samples by annealing stoichiometric amounts of the elements in sealed silica or Pyrex tubes at temperatures between 280 (AuTeI) and 350°C

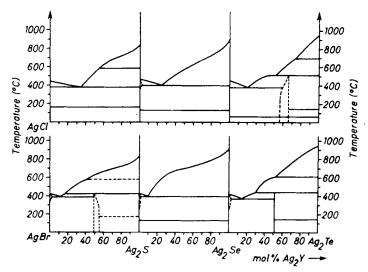


Fig. 8. Some phase diagrams for $AgX-Ag_2Y$ (X = Cl or Br, and Y = S, Se, or Te). (Redrawn from R. Blachnik and G. Kudermann, Z. Naturforsch. 28B, 1 (1973), Fig. 1, p. 2.)

(AuTe₂I) (308). In the case of the selenium compounds, the reaction of the elements remains incomplete, because of partial recrystallization of the highly active gold used for the syntheses (309). The best way of preparation proved to be hydrothermal synthesis in halogen hydracids in the arrangement given in Section II,D,2 (308, 309). Some compounds, for example, AuTe₂Cl, AuSeCl, and AuSeBr, are not formed in the presence of water.² For them, an anhydrous hydrogen halide, HCl or HBr, was used as the solvent, introduced into the ampoule via a vacuum system. The telluride halides are silvery white spears (see Fig. 9), or square crystals. Crystals grown in anhydrous media are of pronouncedly poorer quality, pointing out the role that water plays as a mineralizer.

2. Chemical Properties

The tellurium compounds are insoluble in dilute acids and alkali, and decompose in dilute nitric acid or conc. sulfuric acid. For melting or decomposition temperatures, see Table IV. No data are given for the selenium compounds, of which only a few, small crystals have as yet been obtained.

 $^{^2}$ In the case of selenium compounds in the presence of water, only gold selenide, AuSe, is formed (309).

TABLE IV
Gold Chalcogenide Halides

Compound	Symmetry	α (Å)	<i>b</i> (Å)	c (Å)	eta (degrees)	Z	Space group	Ref.	$\begin{array}{c} \textbf{Melting or} \\ \textbf{decomposition point} \\ (^{\circ}C) \end{array}$
AulTe	Monoclinic	7.313	7.624	7.255	106.26	4	P2 ₁ /c	124,308	360
AuITe ₂	Orthorhombic	4.056	12.579	4.741		2	Pmmb	155,308	440
AuBrTe,	Orthorhombic	4.033	12.375	8.942		4	Cmcm	155,308	457
AuClTe ₂	Orthorhombic	4.020	11.867	8.773		4	Cmcm	155,308	447
AuBrSe	Orthorhombic	6.77	12.22	7.38		8	Pnma	229	
AuClSe	Orthorhombic	6.69	11.85	7.24		8	Pnma	229,309	

Fig. 9. Quartz glass ampoule with AuTe₂I and Au. [From A. Rabenau, *In* "Crystal Growth: an Introduction" (P. Hartmann, ed.), Fig. 7.1., p. 201. North-Holland Publ. Co., Amsterdam, 1973.]

3. Crystallographic Data

Crystallographic data are summarized in Table IV. All structures have been solved. AuTe₂I and AuTe₂Cl, the latter being isotypic to AuTe₂Br, have similar arrangements. They consist essentially of corrugated, two-dimensional nets of gold and tellurium atoms, with interleafing halogen atoms. The tellurium atoms form pairs, joined to successive gold atoms in a -Au-Te-Te-Au- sequence. Each gold atom is coordinated to four tellurium atoms, and each tellurium pair is likewise coordinated to four gold atoms (see Fig. 10). These considerations, and an unusually long gold-halogen distance, suggest that, structurally, the AuTe₂X compounds might conceivably be represented as [Au^{III}(Te₂)_{4/4}]⁺X⁻ (155).

Interesting relationships to other structures exist in AuTeI (124). The four bonds between Au and the nonmetal atoms (one terminal I atom and three bridging Te atoms) generate a two-dimensional net parallel to the b/c-plane (see Fig. 11). Adjacent nets are stacked on each other by lattice translations along the a axis. Geometrically, this net can be derived from the CdI₂ structure, with the metal atoms enclosed in octahedral voids (see Fig. 36, Section XII,C,4). This geometrical relationship may be of crystal-chemical meaning, inasmuch as BiTeI, a telluride iodide of analogous composition, has been reported, once, as a true isotype of CdI₂ (108), with disorder of Te and I atoms; and, once, with a hexagonal structure similar to that of CdI₂ (390), with an ordered distribution of all atoms, (see Section XII,C,4).

In AuSeBr and the isotypic AuSeCl, two gold atoms on mirror planes of the space group, and one nonmetal atom of each kind in general positions, form infinite ribbons parallel to the a axis. In these ribbons one Au atom is bonded to two Br atoms and two Se atoms, while the other Au makes four bonds to Se atoms only (see Fig. 12). In both cases, the

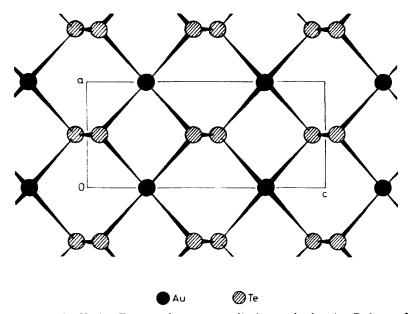


Fig. 10. AuTe₂Cl: Au-Te₂ net, shown perpendicular to the *b* axis. (Redrawn from H. M. Haendler, D. Mootz, A. Rabenau, and G. Rosenstein, *J. Solid State Chem.* 10, 175 (1974), Fig. 1, p. 180.)

coordination is of a planar, distorted-square type. The ribbons are interlocked into sheets perpendicular to the b axis (229). The (sometimes distorted) square-planar coordination of gold in all gold chalcogenide halides shows that Au(III) is involved. In this oxidation state, gold forms four coplanar, covalent bonds (407). The gold compounds bear no relation to the copper(I) compounds of the same stoichiometry (see Fig. 1). The significant differences between these two systems may be summarized as follows (308). (i) The structure of corresponding compounds is different. (ii) In addition to (i), no detectable, mutual solubility has been observed. (iii) Whereas the cuts $M^{I}X^{VII} - Y^{VI}$ (see Fig. 1) in the copper systems are pseudobinary ones, this is not the case with the gold systems. (iv) The compounds of the type $AuTe_2X$ (X = Cl, Br, I) exhibit a metallic type of conductivity, and the corresponding copper compounds are semiconductors.

4. Physical Properties

Resistivity measurements on single crystals of AuTe₂I and AuTe₂Br established the metallic character of the conductivity. Single crystals

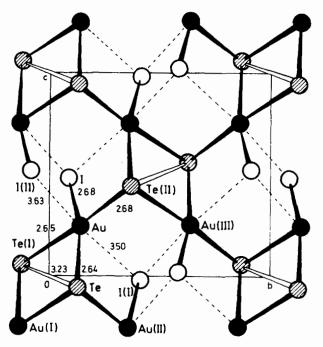


FIG. 11. Corrugated net of the AuTeI structure. (Redrawn from J. Fenner and D. Mootz, J. Solid State Chem. 24, 367 (1978), Fig. 1, p. 368.)

of AuTe₂Cl were too small to be measured in the same way, but, qualitatively, they show the same behavior. For the (semiconducting) AuTeI, a band gap of ~ 0.9 eV results from measurements of the spectral reflectance (308). For the metallic conducting compounds AuTe₂I and AuTe2Br, a small, temperature-independent diamagnetism was found: the feeble paramagnetism due to the charge carriers does not compensate for the diamagnetism of the compounds. AuTeI also shows a temperature-independent diamagnetism with $\chi_{\rm M} = -0.14 \times 10^{-3}$, in good agreement with the value $\chi_{\rm M} = -0.15 \times 10^{-3}$, calculated for the diamagnetic susceptibilities per gram-ion for Au3+I-Te2- (308). AuTe2I shows pronounced oscillations in the magnetoresistance at liquid-helium temperature (Shubnikov-de Haas effect). Measurements, on well developed, single crystals, of the angular dependence of the oscillations have been used to determine the Fermi surface. The layer structure of AuTe₂I is reflected by the high anisotropy, of at least 10:1, of one of the ellipsoidal, Fermi surfaces (341, 342).

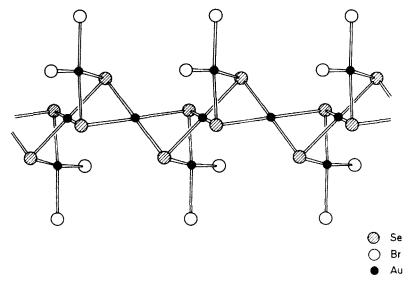


Fig. 12. Perspective view of an atomic ribbon of AuSeBr. (Redrawn from D. Mootz, A. Rabenau, M. Wunderlich, and G. Rosenstein, J. Solid State Chem. 6, 583 (1973), Fig. 1, p. 584.)

D. MISCELLANEOUS

1. Solid State Electrolytes

The most important physical property exhibited by members of the Group IB chalcogenide halides (also, with respect to practical applications) is the enhanced, ionic conductivity found for Ag_3SI and the copper compounds of the type CuTeX. Solid-state electrolytes, where the electric current is due exclusively to the movement of ions, have been known for a long time. In such extreme cases as α -AgI, this conductivity is of the order of magnitude of that of concentrated, liquid electrolytes (see Fig. 5). Unfortunately, AgI loses this property because of a phase transition at 147°C. With the discovery of Ag_3SI by Reuter and Hardel (316), the first, optimized, ionic conductor at moderate temperatures was found (150). As may be seen from Fig. 5, this and other examples can be formally derived from the binary compound by a substitution in the respective, cation lattice (Ag_3SI , CuTeBr), or anion lattice ($RbAg_4I_5$).

Figure 13 shows the principle of a galvanic cell having solid-state electrolytes. By closing the outer circuit, e.g., by a load, silver from the

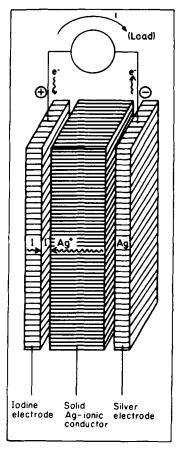


Fig. 13. Galvanic cell having a solid-state silver electrolyte.

cathode dissolves: $Ag \rightarrow Ag^+ + e^-$. The Ag^+ ions move through the solid electrolyte, e.g., Ag_3SI , causing an ionic current in the inner circuit. On the anode, an equivalent amount of I^- is formed by the reaction of iodine with the electrons from the outer circuit. On the interface anode-solid electrolyte, I^- combines with Ag^+ . It is the chemical energy of the reaction $Ag + I \rightarrow AgI$ that is transformed directly into electrical energy. Besides many technical applications, such as solid-state batteries (209), the scientific significance of solid, ionic conductors for thermodynamic and kinetic investigations plays an increasing role. A number of review articles on this topic have been published (133, 135, 150, 167, 168, 408).

2. Hydrothermal Synthesis in Acid Solutions

Most of the chalcogenide halides can, in principle, be prepared by high-temperature reactions, e.g., by heating the respective elements or binary compounds (or both) together in sealed, quartz-glass ampoules. A certain amount of knowledge as to the thermal stabilities of the respective compounds is needed. Separation from other phases, however, often causes difficulties. The true composition has, therefore, to be known, making the method unsuitable for exploring new systems. Here, hydrothermal synthesis in acid solutions (297, 300, 301) has proved to be the most important tool, as it leads directly to isolated, single crystals of the ternary compounds, suitable for their identification by chemical analysis and X-ray investigation.

Many of the chalcogenide halides mentioned in the different Sections have been obtained in this way. As this method is not yet com-

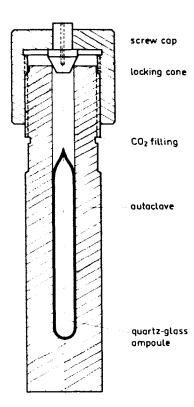


Fig. 14. Equipment for the hydrothermal method, with hydrohalic acids as solvents.

mon practice, the principle will be given. A quartz-glass ampoule having a diameter of ~ 15 mm is filled to between 50 and 70% of capacity with the respective hydrohalic acid. The acid is frozen with the aid of liquid nitrogen, and the components (elements or binary compounds, or both, not necessarily in stoichiometric proportions) are introduced into the ampoule. Then, the ampoule is evacuated, sealed, and placed in an autoclave (see Fig. 14). To prevent damage to the ampoule by the internal pressure developed during heating, the free volume of the autoclave is filled with solid carbon dioxide. The amount is calculated for an external pressure of ~ 2500 bar at the working temperature, a pressure that the ampoule can easily support. After about ten days, there have been formed crystals of sufficient size and quality that can be readily separated (see Fig. 9).

III. Group IIB

A. ZINC AND CADMIUM

No chalcogenide halides of zinc and cadmium are known. The phase diagrams of CdS-CdCl₂ (7, 198, 210), CdSe-CdCl₂ (210, 314), CdTe-CdCl₂ (368), CdTe-CdBr₂ (368), and CdTe-CdI₂ (323) are of a simple, eutectic type. The system CdS-CdCl₂ shows a range of solubility of CdS in solid CdCl₂ that extends to 5% of CdS at room temperature, and increases to a maximum of 12.5% of CdS at 500°C (7, 210).

B. MERCURY

The most important mercury chalcogenide halides are of the type $Hg_3Y_2X_2$ (Y = S, Se, Te; X = Cl, Br, I). The corresponding sulfide halides have been known for over 150 years (326). Quite a lot of work has been performed concerning the preparation, structures, electronic and optical properties, and phototropic behavior of these compounds. Mercury chalcogenide halides of other compositions have been mentioned in the literature (141). As most of these compounds are not well established, they will not be treated in detail, with the exception of the latest contributions (see Table V).

1. Preparative Methods

The compounds $Hg_3Y_2X_2$ are formed as main products or by-products of many reactions. The most important, and most widely applicable, preparative routes are the following.

 $\label{eq:TABLE V} \textbf{MERCURY CHALCOGENIDE HALIDES: BIBLIOGRAPHY}^a$

Compound	Preparation, properties	Single crystals	Structure	Optical properties	Phototropy	Electric conductivity	Magnetism
Hg ₃ S ₂ Cl ₂	15,20,290	66,189,312 381	10,66,110,132 291	20	377	378	377
Hg ₃ S ₂ Br ₂	15,20,290	381	289	20,204	204,377	378	377
$Hg_3S_2I_2$	15,20,290	381	288	20,204,375,376	204,205,233,375-377,380	378	375
Hg ₃ Se ₂ Cl ₂	15,20,290	189	290,292	20	310		-
Hg ₃ Se ₂ Br ₂	15,20,290		290	20,204	204		******
Hg ₃ Se ₂ I ₂	15,20,290	*****		20,204	204,207	-	
$Hg_3Te_2Cl_2$	15,20,290	189,242	290,292	20,242	*	- Manhau	-
$Hg_3Te_2Br_2$	20,290	189	290,292	20			
$Hg_3Te_2I_2$	15,20,290		290	20			
Hg_2YX (Y = S,Se;	14		_				
$X = Cl, Br, I)$ $Hg_5 Te_2 X_6$	14		***************************************	_	_	NAMES AND	_
(X = Cl,Br)	290			_	_		
Hg ₂ SCl ₄	62		-			_	_
$Hg_3Te_2Br_3$	15						_
${ m Hg_3Te_2Br_8}$	179	_	_	_		_	
$Hg_3S_5Cl_2$	51	_	_		_	_	_
$Hg_2S_2I_2$	313	-			_	************	_

^a For a more detailed review of the literature up to 1965, see ref. 141.

- (i) Sintering of Hg_2X_2 and the chalcogen in a sealed tube. S, Se, and Te react at 250, 350, and 500°C, respectively. The initial chalcogen- HgX_2 ratios vary between 5:1 for S and Se, and 4:3 for Te. The reaction is complete after 10-15 h. The excess of chalcogen is removed by dissolution (S) in CS_2 , or sublimation (Se, Te) (15, 20).
- (ii) Annealing of a stoichiometric mixture of HgX₂ and HgY at 150°C in evacuated tubes for 12 h. A microcrystalline product is formed (290).
- (iii) Reaction of HgX₂ with H₂Y by passing the gaseous H₂Y through an aqueous or organic solution of HgX₂. An excess of HgX₂ must be present throughout. The reaction between HgCl₂ and H₂Te has to be conducted in an atmosphere of an inert gas. Hg₃Te₂Br₂ and Hg₃Te₂I₂ cannot be prepared by this method (14, 59, 326).

Other methods of preparation, especially for Hg₃S₂Cl₂, have been mentioned. For instance, HgCl₂ reacts with S-donors as different as Na₂S₂O₃, CS₂, or CuS to afford Hg₃S₂Cl₂. Hg₃Te₂Cl₂ can also be prepared by the reduction of Te(IV) in the presence of Hg(II), with the aid of SO₂ in an aqueous HCl solution (50). A complete survey up to 1964 is to be found in ref. (141). Baroni (14) observed the intermediate formation of compounds of the composition Hg_2YX_2 (Y = S, Se; X = Cl, Br, I) when gaseous H_2Y , which was diluted by N_2 , was passed over the surface of a 1% solution of HgX₂. According to Puff and Kohlschmidt, compounds of the composition $Hg_5Te_2X_6$ (X = Cl, Br) are formed when a mixture of HgTe and an excess of HgX₂ is tempered in evacuated tubes at 150°C for 12 h (290). On the other hand, the authors could not confirm the existence of the compounds $Hg_4S_3Cl_2$, $Hg_5S_4Cl_2$, and $Hg_6S_5Cl_2$, which had been described by Poleck and Goercki (276). Similarly, the existence of the compounds Hg₂SCl₄, Hg₄S₃I₂, HgBr₂·xSe, Hg₃Te₂Br₃, and Hg₃Te₂Br₄ does not seem to have been well established. For a résumé of the preparation and properties of these compounds, see (141). Leonova and Sviridov (206) have since reported the compounds $HgBr_2 \cdot nHgSe (n = 0.1-2.1)$, but their homogeneity was not definitely proved.

Growth of single crystals. Crystals of γ -Hg₃S₂Cl₂ (see Crystallographic Data) measuring 4 \times 4 \times 4 mm³ can be grown over a period of 11 days by hydrothermal synthesis in the temperature range between 450 and 400°C, starting with HgS, and using 12 M HCl as the solvent (312). Single crystals of Hg₃Y₂Cl₂ (Y = S, Se, Te) and Hg₃Te₂Br₂ were obtained from polycrystallinic samples by hydrothermal synthesis in 25% aqueous HCl or HBr at 300–320°C (189). Crystals of α - and γ -Hg₃S₂Cl₂ (sizes: 1.4 \times 1.4 \times 1.4 and 4.4 \times 1.9 \times 0.6 mm³, respec-

tively) were prepared in a chemical-transport reaction (see Section VI,5) by the action of HCl gas on HgS in a sealed ampoule exposed to a temperature gradient ranging from 450 to 345°C (66). The γ-modification was mainly formed. Its preponderance was further increased by the presence of an excess of HCl. Takei and Hagiwara (381) obtained single crystals of Hg₃S₂Cl₂ and Hg₃S₂Br₂ by a gas-phase reaction between HgS and HgCl₂-HgBr₂. The reaction mixture was heated in an evacuated tube to a temperature of 450°C, and, within 30 h, single crystals of a maximum length of 1 mm were deposited at the remote, colder part of the tube, whose temperature was kept between 160 and 200°C for the bromide, and at ~290°C for the chloride. In a similar way, crystals of Hg₃S₂I₂ can be grown. In an evacuated, T-shaped tube, HgS and HgI₂ are placed in opposite side-arms, and heated to 500 and 300°C, respectively. After 2 h, the temperature is uniformly lowered at a rate of $30-40^{\circ}/h$. Crystals of $Hg_3S_2I_2$ (size: $4 \times 2 \times 0.4$ mm³) appear on the walls of the central tube, kept at a temperature of 150-175°C (381). Also, if H₂S gas, diluted with N₂, is passed over HgI₂ at 330°C, crystals of Hg₃S₂I₂ (size: $1.2 \times 0.5 \times 0.1$ mm³) are deposited at the cool end ($\sim 150^{\circ}$ C) of the reaction tube (381).

Nitsche (242) grew single crystals of $Hg_3Te_2I_2$ up to $4\times4\times4$ mm³ in size by sublimation of the microcrystalline product, containing an excess of Te, in a sealed ampoule at 550°C. Within 10 days, crystals were formed at the colder (530°C) part of the ampoule.

2. Chemical Properties

The compounds $Hg_3Y_2X_2$ (Y = S, Se, Te; X = Cl, Br, I) are insoluble in water, dilute acids, and conc. HCl, and they are not attacked by these solvents. Conc. HNO_3 converts the sulfide chloride into the sulfide nitrate $Hg_3S_2(NO_3)_2$ (20, 290). With bases, rapid decomposition occurs, leading to the formation of oxide chacogenides (20), or a mixture of oxide and chalcogenide (111), a matter on which agreement has not yet been reached.

Solutions of HgSe and HgTe in HgBr₂ have been investigated by Jander and Brodersen (178, 179). From conductivity and cryoscopic measurements, they concluded that, at concentrations below 0.08 M, the chalcogenide is present in molecular form. With increasing concentrations, dissociation according to the equation HgY + 2 HgBr₂ = Hg₂YBr⁺ + HgBr₃ is followed by associative processes. The associates again dissociate into ionic species. HgTe, whose maximum solubility is 0.4 M, dissociates more strongly than HgSe. By extraction, from the solidified melts, of the excess of HgBr₂ with acetone, the compounds Hg₃Se₂Br₂ and Hg₆Te₂Br₈ were obtained.

3. Crystallographic Data

The cubic modifications of the mercury chalcogenide chlorides and $Hg_3Te_2Br_2$ are isotypic, and crystallize in the space-group $I2_13$ (290, 292). The structure contains distorted $HgY_{2/3}X_{4/6}$ octahedra (10, 132, 291, 292) (see Fig. 15). However, from the observed bond lengths, it can more realistically be considered as being built up of a covalent, $(Hg_3S_2)^{2+}$ network containing isolated, ionic, interstitial chlorides. The net can be derived from pyramidal (SHg_3) groups. Each mercury atom is partitioned by two pyramids. The Hg_3S_2 distances of 2.42 Å and the $S_1Hg_2S_2$ angles of 165.1° are close to the corresponding parameters for the spiral chains of cinnabar (9). $Hg_3Se_2Br_2$ and $Hg_3S_2I_2$ both have orthorhombic symmetry, whereas $Hg_3Te_2I_2$ crystallizes in a monoclinic lattice (288, 290). The $(Hg_3S_2)^{2+}$ polycation is the fundamental, structural element of these compounds, also (288).

Hg₃S₂Cl₂ and Hg₃S₂Br₂ are polymorphic, affording a low-temperature α , a high-temperature β , and a metastable γ modification (66, 289). β -Hg₃S₂Cl₂, like the α form, has a cubic symmetry, with an almost doubled lattice-constant. γ -Hg₃S₂Br₂ crystallizes in a tetragonal lattice. The other modifications are rhombic. The α and β modifications of Hg₃S₂Cl₂ undergo a reversible, mutual transformation at \sim 300°C.

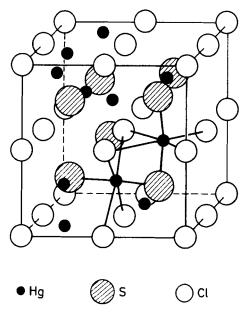


Fig. 15. The crystal structure of α -Hg₃S₂Cl₂. (Redrawn from A. J. Frueh and N. Gray, *Acta Cryst.* B24, 156 (1968), Fig. 1, p. 157.)

 γ -Hg₃S₂Cl₂ has an OD-structure consisting of irregularly staggered layers (110). As in the α modification, a (Hg₃S₂)²⁺ network, built up of (Hg₃S) pyramids that share Hg atoms, is formed. Four Cl⁻ again complete the coordination sphere of Hg to a distorted octahedron, but now, the (Hg₃S) net extends in only two dimensions. The layers are held together by weak Hg-Cl bonds.

Table VI summarizes the structural data on mercury chalcogenide halides.

4. Physical Properties

The phototropic behavior of the mercury chalcogenide halides has received particular attention. This interest was stimulated by the hope that these materials might allow the preparation of photolayers capable of repeated use for the production of images.

When exposed to daylight, the sulfide and selenide halides $\mathrm{Hg_3Y_2X_2}$ are blackened within a few minutes. This black color reversibly disappears when the sample is heated to 90 to $120^{\circ}\mathrm{C}$, or stored in the dark for several days (204, 375–377). The nature of this phototropic behavior has now been widely investigated by analytical, spectroscopic, structural, magnetic, EPR, and radiotracer investigations (205, 233, 375–377, 379, 380, 382). During irradiation of the compounds, electrons belonging to S^{2-} or I^- ions are excited to upper states. The result-

TABLE VI

CRYSTALLOGRAPHIC DATA FOR MERCURY CHALCOGENIDE HALIDES

Compound	Symmetry	а (Å)	b (Å)	c (Å)	β (deg.)	\boldsymbol{z}	Ref.
α -Hg ₃ S ₂ Cl ₂	Cubic	8.94(1)				4	10,290-292
		8.949(2)				4	66,132
		8.937				4	289
β -Hg ₃ S ₂ Cl ₂	Cubic	17.993				32	289
γ -Hg ₃ S ₂ Cl ₂	Orthorhombic	9.094	16.843	9.349		8	289
,		9.081(6)	16.82(1)	9.328(5)		8	110
α -Hg ₃ S ₂ Br ₂	Orthorhombic	36.89	18.00	9.28		32	289
β -Hg ₃ S ₂ Br ₂	Orthorhombic	18.22	9.19	9.24		8	289
γ -Hg ₃ S ₂ Br ₂	Tetragonal	13.14		8.89		8	289
$Hg_3S_2I_2$	Orthorhombic	9.78	18.68	9.43		8	288
$Hg_3Se_2Cl_2$	Cubic	9.06				4	290,292
$Hg_3Se_2Br_2$	Orthorhombic	9.42	9.74	8.87		4	290
$Hg_3Te_2Cl_2$	Cubic	9.33				4	290,292
$Hg_3Te_2Br_2$	Cubic	9.54				4	290,292
$Hg_3Te_2I_2$	Monoclinic	9.78	14.09	14.14	96	8	290

ing, neutral S or I atoms diffuse toward the crystal surface, and leave as gaseous I_2 or SO_2 . Some of the excited electrons neutralize Hg^{2+} ions. The Hg atoms thus formed also diffuse toward the crystal surface, and aggregate there as colloidal droplets that are responsible for the black color. Other excited electrons are captured by the positive holes, which were created by the leaving anions, to form F-centers. Formation of F-centers is irreversible, as is shown by the persisting, paramagnetic moment of the crystals (375, 382), but the printed-out mercury evaporates in the dark, and the crystals regain their original color. According to the results of the radiotracer experiments, considerably more sulfide than iodide is oxidized during irradiation (233, 380). The blackening during the irradiation of $Hg_3Se_2I_2$ with light from a Hg-arc lamp is accompanied by a weak photocurrent (90 pA) (310).

The absorption and diffuse-reflection spectra of the $\mathrm{Hg_3Y_2X_2}$ – compounds are characterized by an absorption edge in the region lying between 420 and 500 nm (204, 376), corresponding to band gaps of 2.1–3.2 eV (20, 205, 242). The forbidden-zone width is mainly determined by the halogen, and decreases with increasing atomic weight of both the halogen and the chalcogen (20). The electric conductivities of the sulfide halides are of the order of $10^{-10}~\Omega^{-1}\mathrm{cm^{-1}}$ at room temperature, and 10^{-6} at $150^{\circ}\mathrm{C}$. The activation energies of $0.95-1.4~\mathrm{eV}$ are smaller than the optically measured band-gaps, but exhibit the same relative orders (378).

The compounds Hg₃Y₂Cl₂ are diamagnetic, as expected (375, 377). The coulomb energies of their lattices have been calculated by Simon and Zeller (358).

IV. Group IIIB and Lanthanides

The first compound of this series, CeSI, was reported by Carter (68) in 1961, and later discussed by Dagron (93). It was obtained by the reaction of iodine with cerium sulfide at 430°C, or by direct synthesis from the elements at 500°C. This was the start of a detailed investigation of this group of compounds mainly by Dagron and co-workers. The present situation is presented in Table VII. No scandium compounds are known thus far, and the same is true for selenium and tellurium halides of these elements.

1. Preparative Methods

The best way of preparation seems to be the successive reaction of the respective elements (94), as described in detail for the sulfide bro-

 ${\bf TABLE\ VII}$ Chalcogenide Halides of Group IIIB and Lanthanides: Bibliography

Compound	Ref.	Compound	Ref.	Compound	Ref.
LaSI	92,94,96,128	LaSBr	92,94-96,128	LaSCl	92,94,96,128
α -CeSI	68,92-94,96,115,128	CeSBr	92,94-96,128	CeSCl	92,94,96,128
PrSI	94	α -PrSBr	94-96,128	PrSCl	94,96,128
		β -PrSBr	95,128,334		
NdSI	94,96,128	NdSBr	94-96,128,334	NdSCl	94,96
SmSI	94,96,128,335	SmSBr	94-96,128,334	SmSCl	94,96
GdSI	94,96,128	GdSBr	94-96,128,334	GdSCl	94
TbSI	96,128	TbSBr	95,96,128,334		
YSI	94,96,128	β -YSBr	94-96	YSCI	94,96
DySl	94,96,128	β -DySBr	94-96,128	DySCl	128
-		β -HoSBr	95,96,128	HoSCl	128
ErSI	94,96,128	ErSBr	94-96,128	ErSCl	85,94,96,128,355
				TmSCl	128
YbSI	94,96,128	YbSBr	94-96,128	YbSCl	128
LuSI	94,96,128	LuSBr	85,94-96,128	LuSCl	128

mides and iodides by Dagron and Thevet (96). Three types of ampoule were used (see Fig. 16): (i) an open, quartz-glass ampoule containing very fine sheets of the metal (L); (ii) an ampoule (containing sulfur) that had to be sealed for the sulfide bromides and chlorides (S); and (iii) an ampoule containing iodine, or a sealed ampoule for bromine or chlorine (I, Br, Cl).

The ampoules are introduced into a Pyrex-glass tube which is sealed under vacuum. The first step is the reaction of the metal with the halogen. For this, iodine is heated to a temperature of 110° C, whereas, after opening of the ampoule, bromine and iodine, are kept at room temperature and -70° C, respectively. The ampoule containing the metal is slowly heated to $\sim 300^{\circ}$ C, yielding grains of the metal covered with the respective halides. In the second step, the reaction product is reacted with the sulfur vapor at a temperature lying between 400 and 500°C, the other part of the ampoule being at 230°C. The sulfide halide forms, and the halogen thereby liberated attacks the unreacted metal. In this way, extremely microcrystalline, homogenous sulfide halide is slowly formed. The quartz-glass ampoule is removed from the tube, and sealed under vacuum, and the crude product is recrystallized for some weeks at 450 to 500° C.

For single crystals, the same method is applied, using an excess of metal and of halogen. After reaction, the mixture of the sulfide halide and the halide is heated to a temperature slightly above the melting point of the respective halide. Perfect, small crystals for X-ray determination are formed. The excess of the trihalide is removed by treatment with anhydrous alcohol (92, 93, 96). CeSI may also be prepared from the sulfides (68, 93); CeSCl is formed by reaction 4 (92).

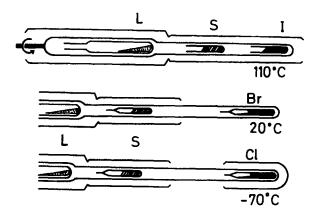


Fig. 16. Preparation of lanthanide chalcogenide halides: experimental arrangement.

$$2 \text{ CeSI} + \text{PbCl}_2 \xrightarrow{500^{\circ}\text{C}} 2 \text{ CeSCl} + \text{PbI}_2$$
 (4)

2. Chemical Properties

Besides a few colorless compounds, such as YSBr, most of these compounds are slightly colored, e.g., yellow (YbSBr), green (PrSI), rose (ErSI), and orange (YbSI). They are very sensitive to humidity, and must be kept under vacuum or dry nitrogen.

3. Crystallographic Data

Whereas the structures of the sulfide iodides and sulfide bromides seem well established, this is not the case for the sulfide chlorides. As the sulfide and chloride ions possess the same number of electrons, they cannot be distinguished by X-ray diffraction, and neutron diffraction would have to be applied in order to obtain an unambiguous picture. Five different structure types have been observed so far (see Table VIII), based on the structure determinations shown in Table IX.

LaSI		LaSBr	LaSCl
α-CeSI		CeSBr	CeSCl
β -CeSl			
PrSI		α-PrSBr	PrSCI ^b
		β -PrSBr	
NdSI		NdSBr	NdSCl
SmSI	(4)	SmSBr	SmSCl
GdSI		GdSBr	GdSCl
TbSI		TbSBr	
YSI		β-YSBr	YSCI
DySI		β-DySBr	$\mathrm{DySCl}^{b,c}$
	(5)	β-HoSBr	$HoSCl^{b,c}$
ErSI		ErSBr	ErSCl
			TmSClb.
YbSI		YbSBr	YbSCl ^{b,c}
LuSI		LuSBr	LuSCI

TABLE VIII
CHALCOGENIDE HALIDES OF GROUP IIIB AND LANTHANIDES

^a Structure types (1) α-CeSI; (2) SmSI; (3) hexagonal, structure unknown; (4) NdSBr;

⁽⁵⁾ FeOCl. b Structure type doubtful. Existence doubtful.

Structure type ^a	Compound	Ref.	а (Å)	<i>b</i> (Å)	c (Å)	Degrees	Crystallographic system
(1)	α-CeSI	115	7.33	14.35	7.05		Orthorhombic
(2)	SmSI	335	11.21			$23.37 (\alpha)$	Rhombohedral
$(3)^{b}$	GdSI		10.73	4.24			Hexagonal
(4)	NdSBr	334	6.94	6.91	7.05	99.28 (β)	Monoclinic
(5)	LuSBr ErSCl	85 355	5.274 5.31	3.995 3.96	8.085 7.45		Orthorhombic

TABLE IX
CHALCOGENIDE HALIDES OF LANTHANIDES: STRUCTURE DETERMINATIONS

For the still-unsolved, hexagonal structure type of GdSI, only the cell dimensions are presented. The structures were described in detail by Dagron and Thevet (96). Their common building-principle is a layer structure formed by planar layers $[LS]_n$ (L = metal), separated by a double layer of bromine or iodine.³ The plane layers $[LS]_n$ are formed by the juxtaposition of metal tetrahedra enclosing sulfur, $[L_4S]$. These layers exhibit two different symmetries.

- (i) This is tetragonal. Fig. 17 shows schematically the sequence of the tetrahedra, which is such that each of the four apexes of a tetrahedron belongs simultaneously to four neighbors, and two edges of the tetrahedra are common to two neighbors. This arrangement can support deformations leading to the orthorhombic symmetry of the CeSI and FeOCl type, respectively, and to the monoclinic NdSBr type.
- (ii) This is hexagonal. Here, in the SmSI type, the apexes of the tetrahedra [L₄S] are common to four neighbors as well (see Fig. 18). Three tetrahedra are arranged at an angle of 120° around a common apex, so that one of the faces lies in the plane of the base. The fourth tetrahedron has an inverse arrangement with respect to the other three, and has three of its edges in common with the others. This arrangement leads to octrahedral holes, forming channels that cross the layers of tetrahedra, and these holes contain the iodide ions.

In the CeSI (115) and NdSBr (334) type of structure, bromine and iodine are coordinated to five metal ions (four of the same layer, and one of the opposite layer) and four halogen ions of the double layer. In the SmSI type (335), iodine is coordinated to three metal ions of a [LS]_n layer and three other iodine ions of the double layer. In the FeOCl type of compound, such as ErSCl (355) and LuSBr (85), the halogen is surrounded by a polyhedron formed by six sulfur and four halogenide ions.

^a See footnote a, Table VIII. ^b Structure unsolved.

³ In the case of the sulfide chlorides, S and Cl are indistinguishable.

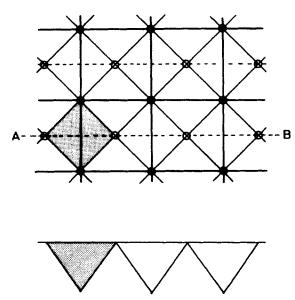


Fig. 17. Tetragonal symmetry: projective view (above) and cut A-B (below) of a [LS]_n-layer formed by a sequence of [L₄S] tetrahedrons (ideally: PbFCl-type; distorted: CeSI-, FeOCl-, and NdSBr-types). (Redrawn from C. Dagron and F. Thevet, *Ann. Chim.* 6, 67 (1971), Fig. 6, p. 77.)

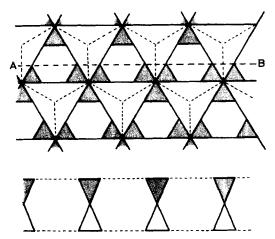
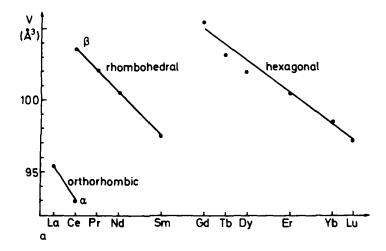



Fig. 18. Hexagonal symmetry: projective view (above) and cut A-B (below) of a $[LS]_n$ -layer formed by a sequence of $[L_4S]$ tetrahedrons (SmSI-type). (Redrawn from C. Dagron and F. Thevet, Ann. Chim. 6, 67 (1971), Fig. 7, p. 77.)

4. The Lanthanide Contraction

In the sequence of structures from the large to the small rare-earth elements, the lanthanide contraction is manifested as shown in Figs. 19a and 19b. Within a structure, the cell volume diminishes linearly with the atomic number. If a certain, limiting value is reached, there is

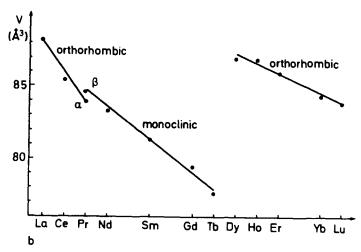


Fig. 19. Molecular-volume variation in relation to the atomic number: a, sulfide iodides; b, sulfide bromides. (From C. Dagron and F. Thevet, *Ann. Chim.* 6, 67 (1971), Figs. 2 and 3, p. 72.)

a jump to another structure more adapted to the respective ionic radii. This change in structure may be accompanied by a large jump in the cell volume.

V. Group IVB

Very little is known about chalcogenide halides of Group IVB elements. Although the existence of sulfide chlorides (45, 274, 329, 365) and of a selenide chloride (329) of titanium was claimed in early publications, their true composition, and even their existence, remains doubtful. They have usually been obtained by the reaction of titanium chlorides with sulfur and selenium, respectively, or with hydrogen sulfide. The synthesis of a pure compound, TiSCl₂, was published in 1959 (113). It is an intermediate of the reaction of TiCl₄ with H₂S.

$$TiCl_4 + H_2S \xrightarrow{<0^{\circ}} TiCl_4 \cdot H_2S \xrightarrow{>0^{\circ}} TiSCl_2 \xrightarrow{>136^{\circ}} TiS_2$$
 (5)

An optimal reaction-temperature of 65°C was claimed. The blackish brown TiSCl₂ is very sensitive to oxygen and humidity. As no X-ray measurements have been made, additional work is needed. Titanium sulfide halides have also been claimed as catalysts for the polymerization of propylene (363).

Nothing has thus far been reported concerning chalcogenide halides of other elements of Group IVB.

VI. Group VB

Although not yet published in a journal, according to thesis work, the vanadium compounds VSCl (11), VSBr, and VSI (208) seem to exist. Numerous niobium chalcogenide halides have been reported, and among these are the best characterized examples of Group VB (see Table X). Only two tantalum compounds, TaS₂Cl₂ (361) and TaSCl₃ (13) have thus far been described in the literature.

1. Preparative Methods

Compounds of the type NbY₂X₂ (Y = S, Se; X = Cl, Br, I) were prepared by the chemical-transport technique (336, see Section VI,5), using a slight excess of the halogen and a stoichiometric metal: chalcogen ratio. The starting materials, elements and, in some cases, S_2Cl_2 or NbCl₅, are heated in sealed glass or quartz-glass tubes in a temperature gradient in the temperature region between 300 and 500°C. Ex-

Compound	Preparation	Crystallo- graphic data	Optical properties	Magnetic data	Other physical data
NbS ₂ Cl ₂	271,322,339	322,339,347	271,322	322,339	322
NbS_2Br_2	271,322,339	322,339	271	322,339	
NbS ₂ I ₂	271,322,339	322,339	271	322,339	
$NbSe_2Cl_2$	322,339	322,339		322,339	
NbSe ₂ Br ₂	322,339	322,339		322,339	
NbSe ₂ I ₂	322,339,406	322,339		322,339,406	322,406
$Nb_{1.1}Se_2I_2$	322	322		, ,	,
NbS ₂ Cl	322,361	322			
NbS ₂ I	322	322			
Nb ₅ Se ₈ Cl ₁₀	322	322			
NbSe ₂ Br	322				
NbSe ₃ Cl	322	322			
$NbSe_4I_{0.33}$	223	223			
NbSCl ₃	13,131		13,131		
NbSBr ₃	131		131		
NbSeCl ₃	131		131		
NbSeBr ₂	131		131		

TABLE X
CHALCOGENIDE HALIDES OF NIOBIUM: BIBLIOGRAPHY

perimental details were given (322, 339), and additional information has been published about NbSe₂I₂ (406). Besides NbY₂X₂ and niobium chalcogenides, other chalcogenide halides are also formed by these reactions: NbS₂Cl, NbS₂I, NbSe₂Br, NbSe₃Cl, Nb₅Se₈Cl₁₀, and Nb_{1.10}Se₂I_{1.96} (322). Single crystals of NbSe₄I_{0.33} (together with NbS₂) have been obtained in this way by transport of NbSe₃ in iodine vapor (223). This compound may also be obtained by direct reaction of a mixture of Nb + 4 Se + I in a sealed tube at 700°C. The excess of iodine is removed by extraction with CCl₄ (223). NbSCl₃ and TaSCl₃ were prepared by the reaction of stoichiometric amounts of the respective pentachlorides and B₂S₃ in a sealed tube at 90°C (Nb) or 80°C (Ta) (13).

$$6 \text{ NbCl}_5 + 2 \text{ B}_2\text{S}_3 \rightarrow 6 \text{ NbSCl}_3 + 4 \text{ BCl}_3$$
 (6)

The reaction starts at room temperature. The BCl₃ formed is condensed in a side arm cooled by liquid nitrogen.

In a similar way, the compounds NbSCl₃, NbSeCl₃, and NbSeBr₃, as well as TaSCl₃, TaSBr₃, and TaSeBr₃, are obtained by reacting the respective pentahalide with Sb₂S₃ and Sb₂Se₃, respectively, in the presence of CS₂ as the solvent at room temperature for 1 to 3 days. In the case of TaSeBr₃, the reaction mixture is heated to 50°C. VSCl has been prepared by the direct reaction of VCl₅ and Sb₂S₃ in a sealed tube (11).

By mixing solutions of sulfur and the pentachlorides of niobium and tantalum in benzene in a dry, inert atmosphere at room temperature, fine crystalline powders are formed having the compositions NbS₂Cl and TaS₂Cl₂, respectively (361). By the direct interaction of sulfur with the pentachlorides in a sealed tube at $240-300^{\circ}$ C, a reaction product sublimes; it has the composition $M(S_2)_m Cl_n$, where M is Nb or Ta, and m = 1-3, n = 1-4, depending on the initial ratio of MCl₅ to S.

2. Chemical Properties

The platelike crystals of the compounds NbY₂X₂ are stable in air, and dissolve in hot HNO₃ with precipitation of Nb₂O₅, and in 20% KOH- H_2O_2 , affording a clear solution. At 10^{-4} torr, they completely decompose as follows.

$$3 \text{ NbS}_2\text{Cl}_2 \rightarrow \text{NbS}_2 + \text{S}_2, g + 2 \text{ NbSCl}_3, g \tag{7}$$

(also, for NbS₂Br₂, NbSe₂Cl₂, and NbSe₂Br₂).

$$NbS_2I_2 \rightarrow NbS_2 + I_2,g$$
 (8)

(also for $NbSe_2I_2$) (339).

At atmospheric pressure, $NbSe_2I_2$ is thermally stable up to $380^{\circ}C$ (406).

The compounds NbSCl₃ and TaSCl₃ (13), as well as NbS₂Cl and TaS₂Cl (361), are reported to be sensitive to humidity. They are insoluble in organic solvents, but NbSCl₃ and TaSCl₃ dissolve in acetonitrile, forming $MSCl_3 \cdot 2$ CH₃CN (13).

3. Crystallographic Data

The compounds NbY_2X_2 were investigated by X-ray powder diffraction, and by the single-crystal, Weissenberg technique. They crystallize in two different structures, monoclinic and triclinic. Some of them occur in both crystallographic forms (see Table XI). Both the monoclinic and the triclinic NbY_2X_2 compounds have layer structures. The layers are parallel to the a,b plane for the monoclinic form, and parallel to the a,c plane for the triclinic form (322). For NbS_2Cl_2 , a complete structure-determination has been performed (347). A layer structure comparable to that of $MoCl_3$ or $AlCl_3$ if one Cl is replaced by an S_2 group was found. Besides the S_2 groups, it is the occurrence of metalmetal bonds that is most characteristic for this compound, and that is typical for a great number of transition-metal compounds in lower oxidation states (340) (see also, Section VII,B). Here, NbS_2Cl_2 exhibits the specific properties of almost all Nb(IV) compounds: the connection of

 $P2_1/c$

		Unit-cell parameters						
	a	<i>b</i>	c	α	β	γ		
Compound	(Å)	(Å)	(Å)	(°)	(°)	(°)	Symmetry	
NbS ₂ Cl ₂	6.27	11.09	6.68		111.07		<u></u>	
NbS_2Br_2	6.54	11.32	6.91		110.54			
$NbSe_{2}Cl_{2}$	6.65	11.44	6.96		109.02		Monoclinic	
$NbSe_2Br_2$	6.76	11.53	7.20		113.90		C2/m	
$NbSe_2I_2$	6.89	12.34 - 12.46	7.51		112.26			
NbS_2Br_2	6.589	7.254	6.528	112.63	120.05	67.72		
NbS_2I_2	6.80	7.23	6.77	102.3	117.4	73.8		
NbSe ₂ Cl ₂	6.538	7.261	6.350	11.35	119.01	66.93	Triclinic	
$NbSe_2I_2$	7.207	7.757	7.060	113.20	121.10	67.59		
NbS₂Cl	8.615	24.754	6.719	98.77	106.58	128.88		
NbS ₂ I	7.032	24.892	6.818	94.66	118.75	104.07		
NbSe₃Cl	11.790	18.847	7.196		95.41		Monoclinic	
Nb ₅ Se ₈ Cl ₁₀	9.365	12.673	7.579		124.78		P2, or P2,/m	
NbSe₄I _{0.33}	9.489		19.13				Tetragonal P4/mnc	
$Nb_{1.1}Se_2I_2$	12.874	25.829	7.815		99.98		Monoclinic	

TABLE XI

CRYSTALLOGRAPHIC DATA FOR NIOBIUM CHALCOGENIDE HALIDES

two niobium by a metal-metal bond. The coordination is shown in Fig. 20, and the situation is best described by the formula ${}_{\infty}^{2}[Nb_{2}(S_{2})Cl_{8/2}]$. Every Nb_{2} group is coordinated to two S_{2} groups, and two such $Nb_{2}(S_{2})_{2}$ units are linked by 4 Cl.

NbSe₄I_{0.33} is tetragonal, and has the space group P4/mnc. The structure is built up of chains of rectangular, NbSe₈ antiprisms. Iodine atoms are situated between these chains. With respect to the crystallographic data, a great similarity to the β -phase of "NbSe₄" exists. The structure is better expressed by the formula Nb₁₂Se₄₈I₄, instead of NbSe₄I_{0.33} (223). Crystallographic data for these and other niobium compounds are summarized in Table XI.

X-Ray powder diffraction photographs suggest that NbSCl₃ and TaSCl₃ are isostructural (13).

4. Physical Properties

IR and Raman spectra of the NbS₂X₂ compounds have been measured, and assigned to the different modes (271). Especially in the absence of X-ray data, such measurements serve to prove the presence of S-S and Nb-S modes (see Table X). Magnetic data are available for

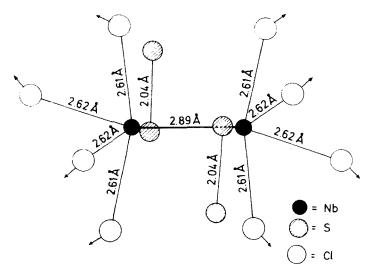


Fig. 20. Coordination polyhedron of NbS₂Cl₂. (Redrawn from H. G. v. Schnering and W. Beckmann, Z. Anorg. Allg. Chem. 347, 231 (1966), Fig. 3, p. 238.)

the NbY₂X₂ compounds (322, 339). They exhibit a temperature- and field-strength-independent diamagnetism; this proves the absence of isolated, Nb⁴⁺ ions, in accordance with the result of the structure determination (339). Conductivity and photoelectric effects have been measured on NbSe₂I₂ single crystals. An activation energy of 0.26 eV was found for the high-temperature branch of the conductivity curve (406). The absorption spectrum of NbS₂Cl₂ single crystals is caused by indirect band-to-band transitions, the indirect band-gap observed being 1.89 eV at ambient temperature (322). NbY₂X₂ compounds are diamagnetic semiconductors having high electrical resistivities.

5. Chemical-Transport Reactions

A "chemical transport reaction" may be defined as the transference of a condensed phase through a gaseous phase by means of a chemical reaction in which gases $B_{(g)}$, $C_{(g)}$, $C_{(g)}$, \cdots are involved.

$$A_{(s)} + B_{(g)} \rightleftharpoons C_{(g)} \cdot \cdot \cdot ; \Delta H_{react.}^{0}$$
 (9)

This definition of the process shows that it differs essentially from sublimation and distillation. A chemical-transport reaction is necessarily reversible; a concentration gradient is induced, e.g., by means of a temperature gradient that reverses the reaction and causes substance A to precipitate out of the gas phase. The direction of transport of a solid in a temperature gradient $(T_1 < T_2)$ is given by the sign of $\Delta H_{\rm react.}^0$.

Endothermic reaction: $T_2 \rightarrow T_1$ Exothermic reaction: $T_1 \rightarrow T_2$

In preparative work, it may be advantageous to superimpose a transport reaction on the synthesis. In this way, the reaction product is prevented from covering the surface of the starting material, a process that would slow, or completely stop, the reaction. As the vapor pressure of the condensed phases may be negligibly small in the range of temperature within which transport takes place, lower temperatures than would otherwise be feasible may be employed. The desired substance is transported in a temperature gradient, and separated from the starting material, and is, in this way, at the same time also purified (see Fig. 21). In the case of niobium sulfide halides, the chemical transport can be described by the following equations.

Generally, it is not important in which form the components are introduced into the transport tube, because the transport reaction transfers the whole system into a reversible state. In the preparation of NbS_2Cl_2 , for example, Nb and S_2Cl_2 , as well as Nb, S, and $NbCl_5$, have been used as starting materials (339). The principles of chemical transport reactions are treated in refs. (241, 336, 337, 338).

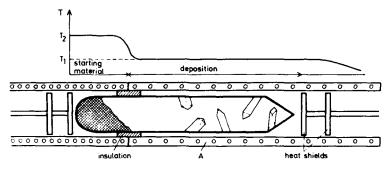


Fig. 21. Reaction scheme of crystal growth by chemical transport: A, transport furnace having two consecutive heating coils.

VII. Group VIB

A. CHROMIUM

The work on chromium compounds is based on two publications only (17, 181). By the reaction between Cr_2S_3 and $CrBr_3$ or CrY (Y = S, Se, Te) and I_2 in sealed, quartz or glass tubes, the compounds shown in Table XII have been obtained.

Preliminary X-ray work on CrSBr crystals, probably formed via a chemical-transport reaction, shows rhombic symmetry (181). Powder patterns of the iodides can be indexed with respect to a hexagonal lattice, and are similar to those of CrI_3 (17, 181).

The ideal composition CrYI does not seem to be attained in all cases (see Table XII). Whether this is due to the existence of extended phases (e.g., $CrSI_{1-x}$) or represents an individual phase is not known. The compounds are described as black, and sensitive to air. Additional work should be done for the chromium system.

B. MOLYBDENUM

Just as, in Group VB, niobium, so, in this Group, molybdenum provides most of the examples of the chalcogenide halides. The occurrence and preparation of such compounds are described in numerous publications. In most cases, they have been obtained as powders, with the composition based on chemical analyses only. The presence of defined, homogeneous phases is, therefore, in many cases doubtful. In addition, some published results are contradictory. A decision is possible where a complete structure analysis has been made. As will be shown later, the formation of metal-metal bonds (so-called clusters), as in the case of niobium, is the most characteristic building-principle. Such clusters

TABLE XII
CHALCOGENIDE HALIDES OF CHROMIUM

Phase	Reaction temperature (°C)	Density (g/cm³)	Ref.
CrSBr	870	3.99	181
$CrSI_{0.83}$	420	4.51	181
CrSeI	400	5.4 1	181
$CrTe_{0.73}I$	315	5.77	181
CrTeI	190	5.50	17

may or may not be maintained in a chemical reaction, and they therefore account for some divergent observations.

1. Preparative Methods

In this section, a review is given of preparative work on chalcogenide halides. Table XIII summarizes the proposed compositions thus far described in the literature.

The first report dates from 1894: Mo and S_2Cl_2 heated to red heat should yield $Mo_5S_8Cl_9$ (362). No further work was published until the 1950s. In 1959, a compound having the composition of $Mo_5S_8Cl_9$ was considered as an intermediate step in the chlorination of MoS_2 (138). $MoCl_5$ reacts at 150°C with S_2Cl_2 to give MoS_2Cl_3 (129). A compound having this composition was also obtained, as black needles, by the reaction of S with $MoCl_3$ in S_2Cl_2 at 450°C under pressure. The composition was confirmed by structure analysis (215, 217). $MoTe_2$ reacts with Br at room temperature to afford $MoTe_2Br_{10}$, which loses Br_2 dur-

TABLE XIII
CHALCOGENIDE HALIDES OF MOLYBDENUM: BIBLIOGRAPHY

	Cl	Br	I
s		Mo ₆ S ₆ Br ₂ (354) Mo ₆ SBr ₁₀ (272)	Mo ₆ S ₆ I ₂ (354)
	$Mo_5S_8Cl_9$ (362)		
	Mo ₃ S ₇ Cl ₄ ^a (101,215,216,217,222,2	261) Mo ₃ S ₇ Br ₄ ^a (101,215,26	1) $Mo_3S_7L^a$ (101, 186)
	$Mo_2S_5Cl_3$ (271,311)	$Mo_2S_5Br_3$ (311)	
	Mo ₂ S ₄ Cl ₅ (311)		
	$MoS_2Cl_3^b$ (129,215,216,217)		
	MoS ₂ Cl ₂ (58,311,356)	MoS_2Br_2 (311)	
	MoSCl ₃ (12,13,57,58,131)	MoSBr ₃ (131)	
	MoSCl ₂ (58,138)		
	MoSCl (269)	MoSBr (269,270)	MoSI (269)
Se		$Mo_6Se_5Br_3^c$ (273,354)	Mo ₈ Se ₅ I ₃ c (273,354)
		$Mo_{\sigma}SeBr_{10}$ (272)	Mo ₆ SeI ₁₀ (272)
	Mo ₃ Se ₇ Cl ₄ ^a (101,222,261)	$Mo_3Se_7Br_4^a$ (101,265)	Mo ₃ Se ₇ L ₄ ^a (101,186)
	MoSeCl ₃ (58,131)	MoSeBr ₃ (131)	-
	MoSeCl ₂ (58)		
Те		$Mo_6Te_5Br_3^c$ (273,354)	Mo ₆ Te ₅ I ₃ c (273,354)
		Mo_6TeBr_{10} (272)	Mo ₆ Tel ₁₀ (272)
		MoTe ₂ Br ₁₀ (260)	1110810110 (212)
		MoTe ₂ Br ₈ (260)	

^a Mentioned in (101, 186) as $Mo_6Y_{14}X_8$. ^b Mentioned in (129) as $Mo_2S_4Cl_6$. ^c $Mo_6Y_5X_3$ composition with the highest X content in the solid solutions $Mo_6Y_{8-x}X_x$.

ing heating by forming MoTe₂Br₈, which is stable up to 300°C (260). Rannou and Sergent (311) reported in 1967 the preparation of five sulfide halides: from MoS₃ and S₂X₂ (X = Cl, Br), they obtained between 350 and 400°C Mo₂S₄Cl₅ and between 420 and 480°C Mo₂S₅X₃ (X = Cl, Br) (311). The reaction of elemental Mo and S₂Cl₂ and S₂Br₂ at 500°C, however, resulted in MoS₂Cl₂ and MoS₂Br₂, respectively (311). Formation of the compound MoS₂Cl₂ was also observed on reaction of MoCl₄ with H₂S in benzene (356) or CS₂ (58).

Compounds having the composition Mo₃Y₇X₄ were reported by Opalovskii et al. (222, 261). Mo₃S₇Cl₄ and Mo₃Se₇Cl₄ which are formed at 400 and 450°C by the reaction of MoCl₃ with S and Se, respectively. The same workers also prepared Mo₃S₇Br₄ and Mo₃Se₇Br₄ by replacing MoCl₃ with MoBr₃ and MoBr₂ in the temperature region between 250 and 300°C. These phases are, however, amorphous (265). Red, single crystals of Mo₃S₇Cl₄ and of orange Mo₃S₇Br₄ have been obtained by reaction of S with MoCl₃ and MoBr₃ in S₂Cl₂ and S₂Br₂ at 400 to 500°C under pressure. The compositions were confirmed independently by structure investigations (215). The d-values were not in agreement with those published by Opalovskii et al. (261) for Mo₃S₇Cl₄, but agreed with those published for $Mo_2S_5Cl_3$ (311). According to later data (101, 186, 222), all of the compounds having the composition Mo₃Y₇X₄ (Y = S, Se; X = Cl, Br) have now been obtained. MoYCl₂ compounds (Y = S, Se) were prepared by the introduction of Sb_2S_3 and Sb_2Se_3 into the syntheses by Britnell et al.; the reaction of Sb₂Y₃ with MoCl₅, MoCl₄, and MoBr₅ to form these compounds takes place between 100 and 300°C (57, 58, 131). MoSCl₃ may also be obtained from B_2S_3 and $MoCl_5$ (12, 13). Compounds of the type MoSX (X = Cl, Br, I) have been obtained from MoX₂, Mo, and S in stoichiometric amounts at 1000°C (269). The compounds are isotypic; the composition was confirmed by structure analysis of MoSBr single crystals (270). In a similar way, Mo_6YX_{10} compounds have been prepared, with Y = S, Se, or Te, and X = Cl or Br, as well as Mo_6YI_{10} , with Y = S or Se (272, 273). In this case, the structure analysis on Mo_6SeCl_{10} (273) also confirmed the composition proposed.

A group of compounds interesting because of their physical properties has been found by Sergent et al. (272, 354). They are derived formally and structurally, by substitution of chalcogen in Mo_6Y_8 (Mo_3Y_4) (Y = S, Se, Te) corresponding to $Mo_6Y_{8-x}X_x$ (X = Cl, Br, I). The preparation again starts from Mo, Y, and MoX_2 . In the case of the selenides, solid solutions are formed, with $0 \le x \le 3$. The maximum halogen content corresponds to $Mo_6Y_5X_3$. Sulfur compounds exist only for Br and I. Their composition is $Mo_6S_6X_2$ (354), with a deficiency of halogen.

2. Chemical Properties

Little has been reported concerning the chemical properties of the numerous compounds mentioned in Table XIII. Also, the behavior of fine powders may differ from that of large, single crystals. Most of the compounds seem to be stable in air: MoSX (X = Cl, Br), Mo₃Y₇Cl₄ (Y = S, Se), MoTe₂Br₈, Mo₂S₄Cl₅, Mo₂S₅X₃ (X = Cl, Br), Mo₅S₈Cl₉, MoS₂Cl₃, and Mo₃S₇Cl₄. Others, such as MoYCl₃ (Y = S, Se) and MoYCl₂ (Y = S, Se), are sensitive to humidity, and decompose more or less rapidly in air. MoTe₂Br₈ is hydrolyzed in water, but is soluble in such polar, organic solvents as ethanol and acetone. The colorless compound can be sublimed (260). MoSCl₃ seems to form adducts with polar, organic solvents (58).

3. Crystallographic Data

The discussion will be restricted to cases for which a complete structure-determination exists. Again, as with the niobium compounds, but even more pronouncedly, the occurrence of metal-metal bonds (340) (see Table XIV) is most significant.

MoSBr: The cubic structure (F43m) consists of Mo₄S₄ cubes that contain Mo₄ clusters with a metal-metal distance of 2.80 Å (see Fig. 22). The clusters are connected by Br atoms in such a way that Mo is in the center of an octahedron (MoBr₃S₃). A molybdenum atom of a cluster is, therefore, connected to three other clusters by three Br bridges, and the compound is best described by the formula [(Mo₄S₄) Br_{12/3}]. The motive Mo₄S₄ is the first example in the chemistry of Mo(III) having the tetrahedral, Mo₄ cluster (269, 270).

 MoS_2Cl_3 , monoclinic (P2₁/c). Figure 23 shows the translational unit, with atom designations. The sulfur atoms form pairs having a distance of 1.98 Å. The molybdenum atoms also occur in pairs enclosed by two bridging S_2 groups. With two chlorine atoms in terminal and

TABLE XIV

METAL-METAL BONDS IN MOLYBDENUM CHALCOGENIDE HALIDES

		Mo-Mo distance	
Compound	Coordination	Å	Ref.
MoS ₂ Cl ₃	Pairs	2.83	215
Mo ₃ S ₇ Cl ₄	Triangle	2.74 - 2.75	215
MoSBr	Tetrahedron	2.80	270
Mo ₆ Cl ₁₀ Se	Octahedron	2.60-2.63	35 4
Metal	Cube	2.72	

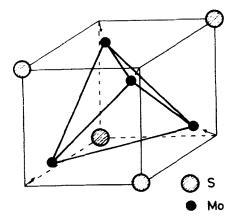


Fig. 22. Tetrahedral Mo₄-cluster in MoSBr. (Redrawn from Ch. Perrin, R. Chevrel, and M. Sergent, C. R. Acad. Sci., Ser. C 280, 949 (1975), p. 951.)

two more in bridging positions, the coordination number of molybdenum is nine. The metal coordination in MoS_2Cl_3 is very similar to that in NbS_2Cl_2 (347), the difference in stoichiometry being adjusted by a different bridging mode of the chlorine atoms of $\frac{1}{2}[Mo_2(S_2)_2Cl_4Cl_{4/2}]$ and $\frac{1}{2}[Nb_2(S_2)_2Cl_{8/2}]$, respectively (215–217).

 $Mo_3S_7X_4$ (X = Cl, Br), monoclinic (P2₁/c). Figure 24 shows the asymmetrical unit of the crystal structure. The three, independent molybdenum atoms form an almost equilateral triangle. Six of the seven sulfur atoms occur in three S_2 groups, each one bridging one Mo-Mo

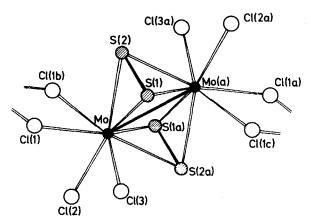


Fig. 23. Two asymmetric units forming the translational element along the a axis of MoS_2Cl_3 . (Redrawn from J. D. Marcoll, A. Rabenau, D. Mootz, and M. Wunderlich, Rev. Chim. Miner. 11, 607 (1974), Fig. 1, p. 611.)

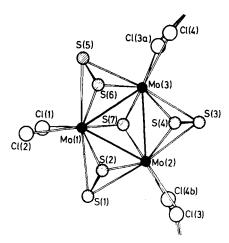


Fig. 24. Asymmetric unit of Mo₃S₇Cl₄, including bridging chlorine atoms. (Redrawn from J. D. Marcoll, A. Rabenau, D. Mootz, and M. Wunderlich, *Rev. Chim. Miner.* 11, 607 (1974), Fig. 4, p. 613.)

bond on the same side of the triangular plane. The seventh sulfur is bonded from the opposite side to all three molybdenum atoms. Hence, two chlorine atoms at each molybdenum atom complete the coordination at one Mo in terminal, at the other two in bridging, positions, forming an unlimited, zigzag chain ${}^{1}_{\infty}[Mo_{3}S(S_{2})_{3}Cl_{2}Cl_{4/2}]$ (215–217 Cl; 215 Br).

 $Mo_6Cl_{10}Se$ has an orthorhombic structure, space group Pccn (273), and is isostructural with Nb₆I₁₁ (357). Structure units Mo₆X'₈, where a Mo₆ cluster in the form of a strongly deformed octahedron is surrounded by a cube of 8 X' (X' = % I + % Se), are linked by bridging I atoms (see Fig. 25). This results in the formula (Mo₆Cl₇Se)Cl_{6/2}. The chalcogenide chlorides Mo₆Cl₁₀Y (Y = S, Se, Te) are isotypic (273).

4. Physical Properties

For reasons mentioned in the previous paragraph, only properties of well-defined phases will be reported.

The thiohalides MoSX are diamagnetic (269). In Mo₄S₄Br₄, molybdenum transfers 12 electrons to the anions, and 12 electrons remain for the cluster Mo₄, forming a doublet for each edge of the Mo₄ tetrahedron (269). The diamagnetism of the compounds of the type Mo₆Cl₁₀Se can be interpreted in a similar way (273) from structure considerations. These compounds have been found to be dielectric (273).

The compounds of type $Mo_6Y_{8-x}X_x$ are conductors, and exhibit a

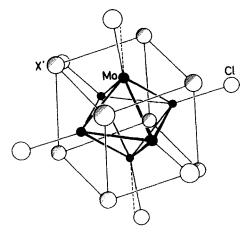


Fig. 25. The group $(Mo_6X_6')Cl_{6/2}$ $(X'=7/8\ Cl,\ 1/8\ Se)$ in Mo_6SeCl_{10} . (Redrawn from A. Simon, H. G. v. Schnering, and H. Schäfer, Z. Anorg. Allg. Chem. 355, 295 (1967), Fig. 7, p. 308.)

small paramagnetism (354). They belong to the superconducting, Chevrel phases.

5. Chevrel Phases

Superconductors having extremely high critical fields have been found in ternary molybdenum chalcogenides (127). This class of compounds was first described by Chevrel et al. (83). The structure may be regarded as being built up by units of Mo_6Y_8 , similar to the Mo_6X_8' unit in $Mo_6Cl_{10}Se$ (see the preceding, and Fig. 25), but linked together directly without bridging halogens. In these high-field superconductors, metal elements M are arranged in channels formed by the Mo_6Y_8 units, the ideal formula being $M_xMo_6Y_8$, where x may lie between 0 and 2, depending on M. The superconducting properties of these compounds were discussed on the basis of the number of valence electrons (354). The highest critical temperatures T_c have been observed with $PbMo_6S_8$ and $SnMo_6S_8$. Of the 36 electrons of the Mo_6 cluster, 16 are transferred to the 8 S of the Mo_6S_8 unit. As Pb and Sn are supposedly divalent in MMo_6S_8 , giving two p electrons to the Mo_6 4d bands, there will be 22 electrons on the Mo_6S_8 cluster in stoichiometric MMo_6S_8 .

With the chacogenide halides of molybdenum of the type $Mo_6Y_{8-x}X_x$ (see the preceding), this effect of varying the number of valence electrons is achieved by replacement of the chalcogen of valency 2^- by halogen of valency 1^- of the Mo_6Y_8 unit. In $Mo_6S_6Br_2$ and $Mo_6S_6I_2$, there

are, again, 22 electrons per Mo_6 cluster, exactly as in $PbMo_6S_8$. It is not surprising, therefore, that these chalcogenide halides exhibit critical temperatures T_c as high as in $PbMo_6S_8$ (354).

C. Tungsten

Only two compounds, $W_2S_7Cl_8$ (362) and $W_4S_9Cl_8$ (97) are mentioned in the older literature, their true nature being uncertain. The existence of the other compounds in Table XV seems to be well established. All of them were reported by the same group, and, with few exceptions, it remains the only work (57, 58, 131). This example illustrates that the lack of information on chalcogenide halides, especially of transition elements, has its main origin in the lack of systematic investigations.

1. Preparative Methods

General methods of preparation are summarized in (58), and the specific conditions for a particular compound may be found in the references cited next. (i) Reaction of a metal halide with sulfur: WSCl₄ (57, 58, 130). (ii) Reaction of metal halides with either Sb₂S₃ or Sb₂Se₃: WSCl₄ (57, 58, 130); WSBr₄ (57, 58), WSeCl₃ (58), WSeBr₄ (58), WSCl₃ (58, 130), WSeBr₃ (58), and WSBr₂ (58). A variation is the preparation of WSCl₄ from WCl₆ and B₂S₃ (13) and of WS₂Cl₂ from WSCl₄ and Sb₂S₃ in CS₂ (131). (iii) Chlorination of tungsten sulfides: WSCl₄ (58). (iv) Reaction of metal halides with dry hydrogen sulfide in CS₂: WSCl₄, WS₂Cl₂ (58). Similarly, WS₂Cl₂ from WOCl₄ + H₂S in benzene (356). (v) Thermal decomposition of tungsten(V) halide sulfides and selenides: WSCl₂, WSeBr₂ (58).

TABLE XV

Chalcogenide Halides of Tungsten: Bibliography

Compound	Ref.	Compound	Ref.
W ₂ S ₃ Cl ₄	362		
$W_4S_9Cl_6$	97		
WSCl ₂	<i>58</i>	WSBr ₂	58
WSCl ₃	57,58		
WSCl.	13,57,58,109,130,359	$WSBr_4$	57,58,109
WS_2Cl_2	<i>58,131,356</i>		- ,
$WSeCl_2$	58	$WSeBr_2$	58
WSeCl ₃	58	$WSeBr_3$	<i>58</i>
WSeCl₄	56,58	WSeBr₄	58

2. Chemical Properties

(i) Tungsten(VI) compounds. The compounds WSCl₄, WSBr₄, WSeCl₄, and WSeBr₄ are very sensitive to moisture. They can be sublimed in vacuo, and are soluble in benzene, carbon tetrachloride, and carbon disulfide (58). (ii) Tungsten(V) compounds. WSCl₃ and WSeBr₃ are much less reactive than the hexavalent compounds, and are hydrolyzed only slowly in moist air. They are insoluble in all nonpolar solvents. WSeBr₃ disproportionates readily during heating, forming WSeBr₂ and WSeBr₄. Disproportionation may, therefore, be the reason for lack of success in the preparation of WSBr₃ (58). (iii) Tungsten(IV) compounds. WSCl₂ and WSBr₂ are insoluble in organic solvents. They are slowly hydrolyzed by moisture (58).

3. Crystallographic Data

The structures of the tungsten(VI) sulfide halides WSCl₄ and WSBr₄ have been solved (109). Although the two compounds crystallize in different space groups, P\(\bar{1}\) and P2₁/c for WSCl₄ and WSBr₄, respectively, their molecular structures are very similar. As tungsten is in the highest valence state, no metal-metal bonds are formed. In the dimeric structure, each tungsten is 6-coordinate, being bonded to four halogen atoms in a plane with a terminal W=S at right angles to this plane (see Fig. 26). The difference between the structures lies in the arrange-

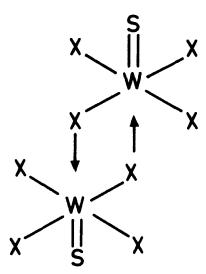


Fig. 26. Structure of WSX₄: dimeric unit of two WSX₄.

ment of the dimeric units. WSeCl₄ and WSeBr₄ are isomorphous with WSCl₄ and WSBr₄, respectively (58, 109).

4. Miscellaneous

IR spectra have been reported for WSCl₄ (13, 57), and WSBr₄ and WSCl₃ (57). WSCl₄ was also the subject of a mass-spectrometric study of the vaporization (359). The reaction of WSeCl₄ with 1,2-dimethoxyethane has been investigated (56).

VIII. Group VIIB

A. MANGANESE

Only two papers have been published about manganese chalcogenide halides, both by Batsanov and Gorogotskaya (18, 19). They reacted pink γ -MnS (wurtzite type, tetrahedral coordination) and green α -MnS (rocksalt type, octahedral coordination) with the respective halogens at moderate temperatures (19), and obtained two series of sulfide halogenides: γ -MnSCl₂, γ -MnSBr, and γ -MnSI; and α -MnSCl₂, α -MnSBr, and α -MnSI, respectively. The reaction products were identified as new compounds by their manganese contents and their X-ray powder patterns. The compounds are stable in air, and practically insoluble in water or the common organic solvents. Densities, refractive indices, and molecular reflections were given (19).

The reactions of MnSe with the halogens at room temperature or $150-170^{\circ}$ C (for iodine) yielded the following selenide halides: MnSeCl, MnSeBr₂, and MnSeI₂ (19). The comparably stable MnSeI₂ occurs in two modifications, of which one is cubic, with a = 6.54 Å. MnSeCl and MnSeBr₂ decompose in water and organic solvents, and are thermally unstable. Heating to $70-100^{\circ}$ C leads to formation of Mn₂Se₂Cl and Mn₂SeBr₂. The elimination of "SeBr₂" from MnSeBr₂ on heating indicates that the compounds MnSeX₂ (X = Br, I) are addition products of selenium halides, rather than Mn(IV) compounds. Densities, refractive indices, and X-ray powder data were reported for the more stable compounds (19).

B. RHENIUM

The known rhenium chalcogenides are of the composition ReYX₂ and Re₃Se₂X₅ (Y = S, Se; X = Cl, Br), including Re₃Te₂Br₅ (140, 263, 264, 353, 393). Additionally, the compounds Re₂S₃Cl₄ (140) and ReS₂Br

(353) are documented in the literature. Chalcogenide iodides of rhenium are not known.

1. Preparative Methods

There are three reasonable routes for preparing rhenium chalcogenide halides. Reactions of rhenium chalcogenides (ReS₂, ReSe₂, Re₂S₇, and Re₂Te₅) with halogens (Cl₂, Br₂) at elevated temperatures in sealed tubes yield the compounds ReYCl₂ (Y = S, Se), Re₃Y₂Br₅ (Y = Se, Te), and Re₂S₃Cl₄ (140, 263, 264, 393). The compounds ReYX₂ (Y = S, Se; X = Cl, Br) may also be obtained by the action of chalcogens on rhenium trihalides (353). An intermediate in the reaction of ReBr₃ with sulfur is ReS₂Br. Fusion of rhenium diselenide with rhenium trihalides at 700–720°C yields the compounds Re₃Se₂X₅ (X = Cl, Br) (264). The detailed conditions for all of these preparations are summarized in Table XVI.

2. Chemical Properties

All of the known rhenium chalcogenide halides are stable in air. With the exception of Re₂S₃Cl₄, they are insoluble in water, acids, and the common organic solvents. They dissolve readily in hot, 50% KOH (263, 264). Re₂S₃Cl₄ is soluble in water, and ethanol, but insoluble in nonpolar organic solvents. With acids, alkalis, or hot water, hydrolytic decomposition takes place. Alkaline solutions can be oxidized to produce perrhenate compounds.

TABLE XVI

PREPARATIVE ROUTES AND EXPERIMENTAL CONDITIONS FOR THE FORMATION
OF RHENIUM CHALCOGENIDE HALIDES

Educts	Temperature range (°C)	Specific conditions	Products	Ref.
ReS ₂ , Cl ₂	400-450		ReSCl ₂ , S ₂ Cl ₂	140,393
Re ₂ S ₇ , Cl ₂	100-120	Cl ₂ diluted with CO ₂	$Re_2S_3Cl_4$, S_2Cl_2	140
ReSe ₂ , Cl ₂	480 - 500		$ReSeCl_2$	264
$ReSe_2$, Br_2	640-650	28-30 h	$Re_3Se_2Br_5$	263
Re_2Te_5 , Br_2	60-70		Re ₃ Te ₂ Br ₅ , TeBr ₄	264
ReCl ₃ , S			$ReSCl_2$	353
ReCl ₃ , Se			$ReSeCl_2$	353
$ReBr_3$, S			$ReSBr_2$	353
ReBr ₃ , Se			ReSeBr ₂	353
ReSe ₂ , ReCl ₃	700 - 720	Sealed ampoule, 10-15 h	$Re_3Se_2Cl_5$	264
$ReSe_2$, $ReBr_3$	700-720	Sealed ampoule, 10-15 h	$\mathrm{Re_{3}Se_{2}Br_{5}}$	264

Treatment of the rhenium sulfide chlorides with an excess of chlorine at temperatures above 450°C results in formation of ReCl₅ (140). Reduction between 350 and 500°C gives binary rhenium chalcogenides (139, 262). Action of water vapor on rhenium sulfide chlorides at 350–500°C produces oxysulfides (139).

3. Crystallographic Data

The structures of the rhenium chalcogenide halides have not been studied. X-Ray powder data were collected, in order to prove the homogeneity of the compounds (140, 263, 264, 353).

IX. Group VIIIB

Only chalcogenide halides of palladium and platinum are mentioned in the literature.

Thiele and co-workers (389) prepared the only known palladium chalcogenide halides, PdTeI and Pd₂SeI₃, by hydrothermal synthesis in HI (see Section II,D,2) at 300°C, starting with the elements. Crystalline Pd₂SeI₃ is better obtained by reaction of PdI₂ with Se and an excess of iodine in a closed ampoule at 250°C (reaction time, 2 days).

The brass-colored PdTeI consists of Jahn–Teller distorted PdTe $_{2/2}I_{4/4}$ octahedra, which are interconnected by common edges and corners to afford a loose, spatial network. The compound is considered to be ionic, containing Pd $^{3+}$ and Te $^{2-}$, although the observed diamagnetism, electronic conduction, and color suggest some metallic character.

In the black, lustrous Pd_2SeI_3 , four quadratic $PdSe_{1/2}I_{3/2}$ entities are connected by a common Se_2^{2-} to a $Pd_4Se_2I_4I_{4/2}$ group (see Fig. 27). These groups combine via common iodines to form corrugated layers. The formal oxidation state of Pd is 2+.

No platinum chalcogenide halides of invariable, exact, stoichiometric compositions are known.

Batsanov et al. (23) reacted sulfur with $PtCl_2$ and $PtBr_2$ by heating mixtures of the reactants in evacuated, sealed ampoules. At $100-200^{\circ}C$ after 12-24 h, sulfide chlorides $PtCl_xS_y$ ($1.70 \le x \le 2$; $0.6 \le y \le 3.35$) and sulfide bromides $PtBr_xS_y$ ($1.87 \le x \le 2.06$; $0.84 \le y \le 1.80$) were formed. The compositions depended on the initial PtX_2 : S ratio, and the temperature. At $320-350^{\circ}C$, loss of chlorine led to the compounds $PtClS_y$ ($1.7 \le y \le 1.9$). According to their X-ray powder patterns, all of these products retained the main structural features of the original platinum halides. From considerations of molar volumes, the authors deduced the presence of polysulfide anions.

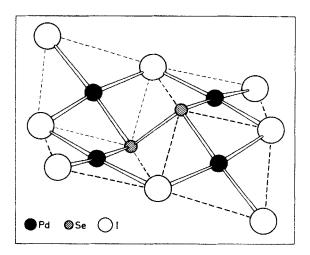


Fig. 27. Pd₄Se₂I₄I_{4/2} unit of the structure of Pd₂SeI₃. (Redrawn from G. Thiele, M. Köhler-Degner, K. Wittmann, and G. Zoubek, *Angew. Chem.* **90**, 897 (1978), Fig. 2, p. 898.)

Thiele and co-workers, who tried to prepare platinum chalcogenide halides, could neither isolate nor identify any pure, homogeneous compound (389).

X. Group IIIA

With few exceptions, the compositions of the chalcogenide halides of the Group IIIA elements correspond to the general formula MYX (M: IIIA metal, Y: chalcogen, X: halogen). But, despite this uniformity, the structures and properties vary considerably with the metal atom, reflecting the general trends of chemical behavior within this group. The semimetal boron forms covalent, organiclike BYX (Y = S, Se; X = Cl, Br, I) and $B_2S_3X_2$ (X = Cl, Br, I) compounds, which are liquids or volatile solids having molecular structures. With decreasing electronegativity of the metal atom, the ionic character of the compounds increases, along with a gain in thermal and chemical stability, which reach a maximum for indium. The low stability of the TlYX compounds (Y = S, Se; X = Cl, Br, I) may be ascribed to the inert, electron-pair effect, which favors the oxidation state +1 for thallium. Therefore, thallium also forms chalcogenide halides of Tl(I). TlTeX compounds are not known.

A. Boron

As already mentioned, the boron chalcogenide halides are covalent, organiclike compounds. The sulfide halides $B_3S_3X_3$ (X = Cl, Br, I) (345, 409-411) and $B_2S_3X_2$ (X = Cl, Br, I) (343-345), as well as $B_2Se_3I_2$ (346), form five- or six-membered rings. They are liquids or low-melting solids that readily dissolve in many organic solvents. The boron selenide halides BSeX (X = Cl, Br, I) (91, 152) are solids that do not dissolve in organic solvents, and decompose without melting. Their degree of polymerization therefore seems to exceed the value of three. Because of their organiclike nature, the boron chalcogenide halides will not be considered in detail.

B. Aluminum

Aluminum forms a complete series of AlYX compounds (Y = S, Se, Te; X = Cl, Br, I). Furthermore, a number of compounds with Se(IV) and Te(IV) are known, such as $TeCl_3^+$ AlCl $_4^-$ (197) and $SeCl_3^+$ AlCl $_4^-$ (364), which are not considered here. A borderline case consists in the reduced phases found in the systems ($TeCl_4 + 4AlCl_3$)—Te and ($SeCl_4 + 4AlCl_3$)—Se (88), e.g., Te_4^{2+} ($AlCl_4^-$)₂ (89), Te_6^{2+} ($AlCl_4^-$)₂ (88), Se_4^{2+} ($AlCl_4^-$)₂ (88), and Se_8^{2+} ($AlCl_4^-$)₂ (87), which contain cyclic polytellurium and polyselenium cations. For a detailed review of homopolyatomic ions of the posttransition elements, see (86).

1. Preparative Methods

The compounds AlYX are best prepared by direct reaction between the respective aluminum halide and chalcogenide in a sealed ampoule at 350°C. The reaction is complete after 2 weeks. In the case of the iodides, a mixture of Al and I₂ (molar ratio 3:10) is used instead of AlI₃. Other preparative methods, such as the reaction of an aluminum halide with Zn or Cd chalcogenide, or with the chalcogen itself, are applicable to the bromide and chloride only, and give poor yields (15-20%) (158, 159, 266, 327, 328).

Growth of single crystals. Crystals of the aluminum selenide halides (needles, maximum length 15 mm) were grown by vapor transport in sealed ampoules between two temperatures (380 and 320°C for AlSeCl, and 350 and 300°C for AlSeBr and AlSeI) over a period of two months. A large excess of the halogenide was used (266).

2. Chemical Properties

The colorless, hygroscopic compounds AlYX are insoluble in common organic solvents. They decompose into the corresponding halide and chalcogenide at temperatures between 280 (AlYI) and 400°C (AlYCl). With water vapor, hydrolysis to Al(OH)₃ occurs. In the case of the sulfide halides, the intermediate oxide halide can be isolated. With oxygen γ -Al₂O₃ is formed at temperatures between 25 (AlTeI) and 200°C (AlSCl). Again, the sulfide halides, which are more inert against oxygen than the other compounds, react via an intermediate oxide halide. Reaction with chlorine leads to the formation of AlCl₃. With NH₃, chalcogenide amides of the general formula AlY(NH₂)·NH₃ are obtained (158, 159, 266, 327, 328).

3. Crystallographic Data

AlSCl has an orthorhombic structure, with the lattice constants a=8.09, b=10.52, c=3.86 Å, and Z=4. It is probably isotypic with SbSCl and BiSCl, crystallizing in a layer type of lattice (157) (see Section XII,C,5). The selenide halides are monoclinic, with the probable space-group P2₁/m. The lattice constants are given in Table XVII. The constancy of the b parameters for all three compounds suggests the general presence of an Al-Se chain extending in that direction (266).

Structural data, except powder patterns, for the other compounds are not known.

C. GALLIUM

Like aluminum, gallium forms a series of GaYX compounds (Y = S,Se,Te; X = Cl,Br,I) (160). Hardy and Cottreau (165) noticed that at least GaSCl and GaSBr do not correspond exactly to this stoichiometry. These phases are halogen-rich, according to the formula $Ga_9S_8X_{11}$ (X = Cl,Br).

TABLE XVII
CRYSTALLOGRAPHIC DATA FOR ALUMINUM CHALCOGENIDE HALIDES

Compound	Symmetry	(Å)	<i>b</i> (Å)	с (Å)	β (degrees)	z	$d_{ m ex} = ({ m g/cm^3})$	Ref.
AlSCl	Orthorhombic	8.09	10.52	3.86		4	1.87	157
AlSeCl	Monoclinic	16.33	12.87	18.172	94.0	4	2.43	266
AlSeBr AlSeI	Monoclinic Monoclinic	16.97 18.11	12.87 12.87	18.731 19.973	94.0 94.0	4 4	2.98 3.30	$\frac{266}{266}$

1. Preparative Methods

The chalcogenide bromides and chlorides may be prepared by the reaction of the halide with the respective chalcogenide in a sealed ampoule. A mixture of gallium metal and chalcogen may be used, instead of the chalcogenide. The chalcogenide iodides are synthesized directly from the elements. The exact preparative conditions are listed in Table XVIII (160, 165).

Growth of single crystals. Ga₉S₈Cl₁₁ and Ga₉S₈Br₁₁ have been obtained as needle-shaped, single crystals, 40-50 mm long. They were prepared by the reaction of Ga, S, and an excess of the halogenide at 400 (Ga₉S₈Cl₁₁) or 450°C (Ga₉S₈Br₁₁) (165).

2. Chemical Properties

The gallium chalcogenide halides are hygroscopic compounds that decompose (without melting) at temperatures between 240 and 380°C to a mixture of chalcogenide and halide (see Table XVIII). The telluride halides are yellow, and the other compounds are colorless (160, 165).

		TAI	BLE	E XVIII		
PREPARATION	AND	PROPERTIES	OF	GALLIUM	CHALCOGENIDE	HALIDES

Compound	$Preparation^a$	Temperature (°C)	Time (days)	Temperature of decomposition (°C)	$d_{ m ex}$ (g/cm 3)	Ref.
GaSCl	A,B	260	14	250-260	2.96	160
$Ga_9S_8Cl_{11}$	A B	250	$0.1 \\ 14-21$	400	2.52	165
GaSBr	A,B	305-345	14	360-370	3.37	160
$Ga_9S_8Br_{11}$	A B	330	$0.1 \\ 14-21$	450	3.20	165
GaSI	\mathbf{c}	300	10 - 15	370 - 380	3.74	160
GaSeCl	A,B	260	8 - 12	240 - 250	3.54	160
GaSeBr	A,B	300-340	12-15	280-290	3.96	160
GaSeI	C	300	14 - 21	320 - 330	4.23	134,160
GaTeCl	A,B	260-270	10 - 15	230-240	4.17	160
GaTeBr	A,B	260 - 270	10 - 15	250-260	4.83	160
GaTeI	C	260-280	5-10	240-250 800	4.75	160 200

^a A: $GaX_3 + Ga_2Y_3$; B: $GaX_3 + 2 Ga + 3Y$; C: from the elements.

3. Crystallographic Data

 $Ga_9S_8Cl_{11}$ and $Ga_9S_8Br_{11}$ are monoclinic; probable space-group P2/m, Z=20. The lattice constants are a=17.74 and 18.15, b=58.9 and 59.65, c=18.92 and 19.88 Å, and $\beta=122.2$ and 121.5° for the chloride and bromide, respectively (165).

D. INDIUM

Again, the complete series of InYX compounds (Y = S,Se,Te; X = Cl,Br,I) exists. Of the Group IIIA chalcogenide halides, the indium compounds have been the most extensively studied.

1. Preparative Methods

Indium chalcogenide chlorides and bromides are obtained by heating mixtures of the chalcogenide and the halide in sealed ampoules to temperatures between 200 and 420°C (see Table XIX). For the preparation of the chalcogenide iodides, In and I_2 are used instead of InI_3 . InTeI may be synthesized directly from the elements (161).

The preparation conditions are listed in Table XIX. InTeCl and InTeI may also be obtained by fusing stoichiometric mixtures of Te and InCl, or InI (80, 331).

Growth of single crystals. Single crystals of the selenide and telluride halides can be grown by recrystallization at 360–390°C, or sublimation at 420 (InSeCl) and 370°C (InTeI), respectively (162).

	TABLE XIX						
PREPARATION	AND PROPERTIE	es of Indium	CHALCOGENIDE	HALIDES			
Drong	Tomporature	Time		d			

Compound	Prepa- ration ^a	Temperature (°C)	Time (days)	Color	$d_{ m ex} = ({ m g/cm^3})$	Ref.
InSCl	A	200-225	35	Light grey	3.68	161,162
InSBr	Α	200-225	35	Light grey	4.32	161,162
InSI	В	170-190	14	Yellow	4.11	161,162
InSeCl	Α	400-420	14	Dark yellow	4.52	161,162
InSeBr	Α	380-440	14 - 20	Dark brown	5.11	161,162
InSeI	В	380 - 400	7-14	Light yellow	4.69	161,162
InTeCl	Α	400-410	14	Brown	4.52	81,161,162
InTeBr	Α	380 - 420	14 - 20	Yellow-brown	4.40	161,162
InTel	C	350-400	8-14	Red-brown	5.07	80,161,162

[&]quot; A: $InX_3 + In_2Y_3$; B: $In_2Y_3 + In + 3/2 I_2$; C: from the elements.

2. Chemical Properties

The indium chalcogenide halides are more stable than their aluminum and gallium analogs. Thus, only the sulfide halides are moisture-sensitive, and must be kept and handled under an inert-gas atmosphere. Generally, the chemical stability increases in the orders S < Se < Te and I < Br < Cl. The indium chalcogenide halides are only slowly, if at all, attacked by water. With strong acids, decomposition, usually accompanied by evolution of H_2Y gas, takes place. The attack of hot bases leads to the formation of $In(OH)_3$. Only the sulfide halides decompose before melting. The thermal behavior is described in (80, 81, 161). At elevated temperatures, all of the compounds become air-sensitive. InTeCl, the most stable one, is oxidized in air at 360° C, but is stable up to 680° C under argon (81).

3. Phase Diagrams

Safonov et al. (331) determined the liquidus surface of the ternary In-Te-Cl system by DTA, X-ray diffraction, and crystal optical methods. Only one ternary compound, InTeCl, exists. The crystallization field of InTeCl occupies 6% of the diagram, which demonstrates the considerable thermodynamic stability of this compound. InTeCl melts congruently at 453°C. It forms part of the two pseudobinary systems In₂Te₃-InCl₃ and InCl-Te (81). Whereas the first consists of the two eutectic parts In₂Te₃-InTeCl and InTeCl-InCl₃, the latter is more complicated. It is composed of the monotectic system InTeCl-InCl and the eutectic system Te-InTeCl, where tellurium forms a solid solution with InTeCl containing from 100 to 82 atom% of Te at the eutectic temperature (81).

Safonov et al. (330) also investigated the In-Te-I system by DTA and X-ray diffraction. The system contains three, congruently melting, ternary compounds: InTeI, InI₃·2TeI₄ and InI₃·3TeI₄, of which the latter two are out of the scope of this review. InTeI melts congruently at 475°C. It forms part of the quasibinary cuts In₂Te₃-InI₃ and InI-Te, where the sections InTeI-In₂Te₃, InTeI-InI₃, InTeI-InI, and InTeI-Te are all of the eutectic type (80).

4. Crystallographic Data

InSCl, InSBr, InSeCl, and InSeBr are isotypic, and crystallize in the hexagonal CdCl₂ lattice type. The halide and chalcogenide ions are statistically distributed among the Cl sites. As in CdCl₂, the bonding within the InY_{3/3}X_{3/3} octahedra should be predominantly ionic (162).

The symmetry of the isotypic compounds InSI and InSeI is tetragonal (162).

The telluride halides crystallize in monoclinic lattices, but only In-TeBr and InTeI are isotypic (162). InTeCl forms a layer type of structure, as do InSCl and its analogs, but, owing to the size of the Te atom and the enhanced covalency of the In–Te bond, only a coordination number of 4 for indium is realized. The structure is built up of strongly distorted, InTe_{3/3}Cl_{1/1} tetrahedra that share the corners and edges occupied by Te atoms. The Cl atoms are coordinated to one tetrahedron each, and do not take part in the layer formation (324, 325).

The crystallographic data are summarized in Table XX.

E. THALLIUM

Three groups of thallium chalcogenide halides have been reported, corresponding to the formulas TlYX (Y = S,Se;X = Cl,Br,I) (22), Tl₄YCl₄ (Y = S,Se) (321), and Tl₂YX₄ (Y = S,Se;X = Br,I) (21). Thallium telluride halides are not known.

1. Preparative Methods

The sulfide halides TISX are prepared by heating a stoichiometric mixture of the thallium halogenide and sulfur in a sealed ampoule at 180°C for 30 h. The mixture is then slowly cooled to room temperature. The compounds TISeX are obtained by reaction between thallium metal and selenide halide at 280°C during 40 h (22). On heating TIYCl to 500°C in vacuo, the compounds Tl₄YCl₄ result (321). Dissolution of

TABLE XX

CRYSTALLOGRAPHIC DATA FOR INDIUM CHALCOGENIDE HALIDES

Compound	Symmetry	а (Å)	<i>b</i> (Å)	с (Å)	β (degrees)	Z	Ref.
InSCl	Hexagonal	3.728		17.78		3	162
InSBr	Hexagonal	3.820		18.59		3	162
InSI	Tetragonal	18.28		9.96		32	162
InSeCl	Hexagonal	3.860		18.58		3	162
InSeBr	Hexagonal	3.935		19.13		3	162
InSeI	Tetragonal	18.70		10.15		32	162
InTeCl	Monoclinic	7.42	14.07	7.13	92.1	8	162
		7.42	14.06	7.07	92.1	8	324,325
InTeBr	Monoclinic	7.350	7.577	8.343	117.61	4	434
InTel	Monoclinic	8.42	7.73	7.44	94.3	4	162

Tl₂S in an alcoholic Br₂ solution, and evaporation of the solvent, yields Tl₂SBr₄. The same procedure with iodine gives Tl₂SI₄. Tl₂SeBr₄ is prepared by the action of Br₂ on powdered Tl₂Se, whereas I₂ and Tl₂Se, heated together in a sealed tube at 140°C for 40 h, form Tl₂SeI₄ (21).

2. Miscellaneous

The compounds TlYX are insoluble in water and organic solvents. Decomposition with oxidizing acids and bases leads to segregation of the chalcogen. On heating, disintegration into Tl(I) halide and chalcogen takes place between 96 and 132°C (22). The decomposition is incomplete for the chlorides, which form Tl_4YCl_4 (321). The electric conductivity of Tl_2S -TlCl melts has been measured (404).

 Tl_4SCl_4 and Tl_4SeCl_4 melt at 440 and 442°C, respectively. They can be distilled between 650 and 700°C without decomposition. They are insoluble in H_2O and organic solvents, but soluble in aqueous alkaline solutions. With conc. acids, decomposition takes place. The electric conductivity has been determined to be $1.4 \cdot 10^{-7}$ and $2.1 \cdot 10^{-7}$ Ω^{-1} cm⁻¹ for Tl_4SCl_4 and Tl_4SeCl_4 , respectively. The probable structural formula is $Tl_3(TlCl_4Y)$. The compounds thus, presumably, consist of $Tl_{1/4}Cl_{4/4}Y_{2/8}$ octahedra that are interconnected by the chalcogen atoms to linear chains (321).

The Tl₂YX₄ compounds are all hygroscopic. The greenish-yellow Tl₂SBr₄ reacts with water, or HCl, to give TlBr₂. The black-violet iodine derivatives are insoluble in these solvents. Organic solvents tend to wash the halogen away (21).

XI. Group IVA

A. CARBON, SILICON, AND GERMANIUM

For these three elements, for the first time in this Chapter, combinations of a nonmetal with chalcogens and halogens have to be discussed. As regards their structure and properties, most of these do not belong to the field of this review as described in the introductory Chapter. For those interested in the ternary carbon compounds that have the composition CSX_2 (X = Cl, Br, I), information may be found in an issue of "Gmelin" (142).

Only sulfide chlorides of silicon have thus far been described (e.g., 143). Among these, a nonvolatile compound, Si₂S₃Cl₂, was mentioned (351), but no details were given. Areas of vitrification have been found in the systems Si-S-Br (185), Si-S-I (185), Si-Se-Br (185), and Si-

Se-I (100, 185). These chalcogenide halide glasses belong to the so-called "semiconducting glasses" that have attracted much attention in solid-state physics, because of their physical properties (see Section XII,B); they are, however, not treated in this review.

The tendency to glass formation is even more pronounced in the systems containing germanium, such as Ge-S-Br (185), Ge-S-I (77, 99, 185), Ge-Se-Br (185), Ge-Se-I (100, 185), and Ge-Te-I (118). In these systems, such phases as GeSI₂ (99, 185, 278), GeSeI₂ (100, 185), Ge₂Se₃I₂ (100), and Ge₂SeI₆ (100) have been investigated, and some of them can be recrystallized, to yield individual compounds. A germanium sulfide bromide, Ge₄S₆Br₄, and, probably, the homologous iodide were discovered by Pohl (275). The almost colorless bromide, which decomposes at 305°C, has a molecular structure. According to their phase diagrams (213, 254), GeS and GeI₂ do not form ternary compounds.

B. TIN

The first chalcogenide halides of tin were reported in 1963 (24). Although numerous publications since then have been devoted to this subject, the existence and true composition of some the compounds described here still seem questionable. It is, therefore, advisable to start with a discussion of the systems $SnY-SnX_2$ (Y = S, Se, Te; X = Cl, Br, I).

1. Phase Diagrams

a. $SnS-SnX_2$. The systems $SnS-SnX_2$ are presented in Fig. 28 (48, 144); however, the discussion that follows should be noted. SnS and SnCl₂ form a simple eutectic system without any ternary phase (48, 231). In the eutectic system SnS-SnBr₂, an incongruently melting compound having the approximate composition Sn₉S₂Br₁₄ was reported by Blachnik and Kasper (48). For this compound, however, Thevet et al. (386), gave the composition Sn₂SBr₂ and a hexagonal structure (385). The composition Sn₇S₂Br₁₀ has since been claimed, from a singlecrystal measurement for the ternary compound, and it was claimed to be isostructural with Pb₇S₂Br₁₀ (104). The situation as regards the eutectic system SnS-SnI is even more complicated. Novoselova et al. (253) claimed the formation of the compounds Sn₃SI₄ and Sn₇S₃I₈, melting incongruently at 330 and 410°C, respectively, the first of which exhibited an additional, thermal effect at 266°C. Their phase diagram is included in Fig. 28 (48). By contrast, the phase diagram published by Thevet et al. (386, 388) differed with respect to the composition, not only of the eutectic but also of the ternary phase. The latter compound,

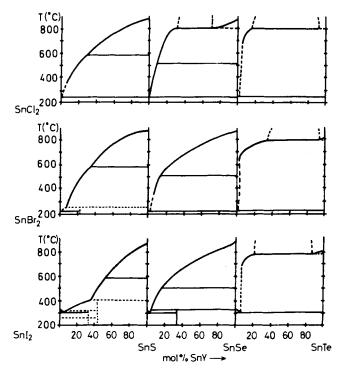


Fig. 28. Systems SnY-SnX₂ (Y = S, Se, or Te; X = Cl, Br, or I). (Redrawn from R. Blachnik and F. W. Kasper, Z. Naturforsch. 29B, 159 (1974), Fig. 2, p. 160; and R. Blachnik and G. Kudermann, Z. Naturforsch. 28B, 1 (1973), Fig. 1, p. 2.)

 $\rm Sn_2SI_2$, was said (385) to exist in an α and a β form. The crystal structures of both forms have been elucidated (119, 239, 240, 388). Apart from questions that still remain concerning the true relationship of α -and β - $\rm Sn_2SI_2$, a publication by Fenner (121) on the synthesis and structure of a new ternary phase, $\rm Sn_4SI_6$, contradicts both of the phase diagrams already mentioned.

- b. $SnSe-SnX_2$. All systems belong to the eutectic class, the system $SnSe-SnCl_2$ being of the monotectic type (see Fig. 28). The compound Sn_4SeBr_6 is mentioned in the literature (104), and Blachnik and Kasper (48) reported the peritectic compound Sn_3SeI_4 , the composition of which has been confirmed by Thevet et al. (387), correcting an earlier (wrong) composition of Sn_2SeI_2 (385).
- c. $SnTe-SnX_2$. All three systems are of the monotectic type (see Fig. 28) and show no ternary. A ternary compound of the composition Sn_4TeBr_6 has, however, been reported (104).

d. Sn(IV) Compounds. In the literature the, following compounds with the oxidation state +4 for tin were reported, and identified as single phases by X-ray patterns (24): $Sn_2Cl_2S_3$ (16, 24), $Sn_3Se_5Cl_2$, and $Sn_4Te_7Cl_2$ (16, 24). No compounds have been found in the systems $SnS_2 - SnI_4$ (383).

2. Preparative Methods

All tin(IV) compounds may be obtained by annealing stoichiometric mixtures of the binary tin compounds in closed ampoules. α -Sn₂SI₂ can only be obtained free from the β -phase by applying an excess of SnI₂ at a temperature below 350°C (388). An excess of SnI₂ cannot be removed from α -Sn₂SI₂ by sublimation without transforming the α into the β form (388).

Tin(IV) chalcogenide chlorides are obtained by oxidation of $SnCl_2$ with the respective chalcogen (24). For $Sn_2Cl_2S_3$, the chloride and sulfur, in the ratio of 1:1, or 1:2, are heated in sealed tubes at $140-150^{\circ}C$ for 8 hours. The volatile by-products $SnCl_4$ and SCl_2 are removed in a vacuum desiccator. In a similar way, $Sn_2Cl_2Se_5$ and $Sn_4Cl_2Te_7$ are obtained by fusing 1:1 mixtures of $SnCl_2$ and Se, or Te, at 240 and 480°C, respectively.

3. Crystallographic Data

Table XXI shows the crystallographic data as far as they are known. The structures of the three sulfide iodides have been determined by single-crystal studies. Powder patterns of the Sn(IV) compounds not given here have been reported elsewhere (24).

a. SnS_2I_2 . The structures of the α and β modification are similar, and contain common, structure elements. A detailed description is therefore restricted to β -SnS₂I₂. This orthorhombic structure (see Table XXI), published independently by two groups (119, 240, 388), is built up of $(Sn_4S_2I_4)_{\infty}$ ribbons extending in the direction of the shortest axis (the b-axis). The main part of such an arrangement is a folded ribbon formed of

groups with outward-pointing SnI₂ (see Fig. 29). Tin forms five, sulfur two, and iodine two or four, bonds, respectively. The coordination of tin may be considered to be a deformed octahedron, the sixth coordinate

TABLE XXI
CRYSTALLOGRAPHIC DATA FOR TIN(II) CHALCOGENIDE HALIDES

Compound	Symmetry	Space group	а (Å)	b (Å)	с (Å)	β (degrees)	Z	Ref.
α-Sn ₂ SI ₂	Monoclinic	B2/m	14.305	17.281	4.435	110.47	6	239,388
β -Sn ₂ SI ₂	Orthorhombic	Pnma	17.475	4.412	25.390		12	119,240,388
Sn ₄ SI ₆	Monoclinic	C2/m	14.129	4.425	25.15	93.42	4	<i>121</i>
Sn ₂ SBr ₂	Hexagonal		12.239		4.390		4	385
Sn ₃ SeI ₄	Tetragonal	P4 ₂ /nmc	8.455		15.87		4	387
$Sn_7S_2Br_{10}$	Hexagonal	$P6_3/m$ or $P6_3$	11.35		4.40		1	104
Sn ₄ SeBr ₆	Orthorhombic	Pnma or Pn2 ₁ a	8.74	4.15	10.50			10 4
Sn₄TeBr ₆	Orthorhombic	Pnma or Pn2 ₁ a	8.95	4.22	10.65			104

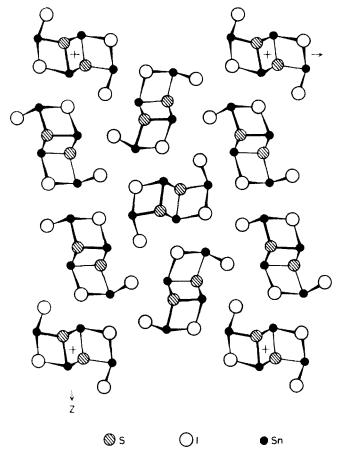


Fig. 29. Structure of β -Sn₂SI₂. (Redrawn from J. Fenner, *Naturwissenschaften* 63, 244 (1976), Fig. 1, p. 244.)

being represented by a relatively distant iodine. If the longest Sn-I distance of this octahedron that exceeds the common bonding-length is neglected, a truncated quadratic pyramid is obtained that has tin below the basal plane (see Fig. 30). Two types of such pryamids exist, those in which (A) the base consists of four I atoms and the apex of an S atom, and (B) the base consists of two I atoms and two S atoms, the apex being a third S atom. The pyramids of type A are connected with those of type B in two ways: by a face consisting of S and I atoms, and by a vertical edge of S atoms. Whereas the pyramids of type B are interconnected by a face consisting of S atoms, the pyramids of type A do not share common atoms. In the structure of β - Sn_2SI_2 , hexagonal

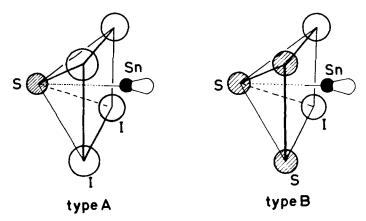


Fig. 30. Pyramids of type A and B, including the lone-electron pair. (Redrawn from Nguyen-Huy-Dung and F. Thevet, *Acta Cryst.* **B32**, 1112 (1976), Fig. 3, p. 1114.)

channels of iodine exist that contain tin and sulfur in an ordered arrangement. The structure elements just described are also found in the monoclinic α -Sn₂SI₂ (239, 388). The main difference consists in the occupation of the vast, hexagonal, iodine channels which, in the α modification, should contain tin and sulfur statistically distributed on the same crystallographic sites. Although the authors used this argument for explaining the possibility of a deviation from stoichiometry (239), this unusual result requires further discussion. With the exception of the tin atoms in the hexagonal channels, each tin has the same pyramidal environment as in SnS and SnI₂, the binary constituents of the phase diagram.

b. Sn_4SI_6 . In addition to structure elements of β - Sn_2SI_2 , the third ternary compound, Sn_4SI_6 , contains domains of pure SnI_2 (Sn_6I_{12}), as shown in Fig. 31 (121). The structure may be considered to be a variety of the SnI_2 structure, with layers perpendicular to the c axis. Sulfur is built into these layers in such a way that structure elements of β - Sn_2SI_2 are formed (121).

4. Physical Properties

The ¹¹⁹Sn Mössbauer data for $Sn_7S_2Br_{10}$, Sn_4SeBr_6 , and Sn_4TeBr_6 have been measured, and compared with those of the parent halides and chalcogenides. The data are consistent with a random distribution of halide and chalcogenide anions (104). Thus far, the reflection spectra of a few tin(IV) compounds assumed to be semiconductors have

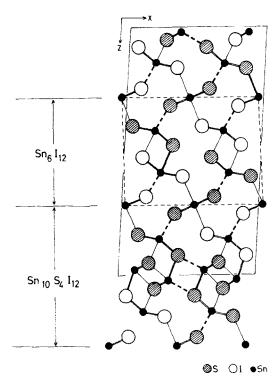


Fig. 31. Structure of Sn₄SI₆. (Redrawn from J. Fenner, Z. Naturforsch. 33B, 479 (1978), Fig. 1, p. 480.)

been measured. The following, optical band-gaps, ΔE, have been reported: Sn₂S₃Cl₂, 2.7 eV; Sn₃Se₅Cl₂, 1.5 eV; and Sn₄Te₇Cl₂, 1.1 eV (16).

C. LEAD

Although the phase diagrams of all of the systems $PbY-PbX_2$ (Y = S, Se, Te; X = Cl, Br, I) have been published (see Fig. 32), contradictory data are to be found in the literature with respect to the existence and composition of ternary phases. Only four of them could be identified by structure determinations. They are summarized in Table XXII.

1. Phase Diagrams (Fig. 32)

a. Lead Sulfide Halides. The phase diagrams PbS-PbBr₂ (247, 249, 302) and PbS-PbI₂ (247, 248, 302) are of the peritectic type, with

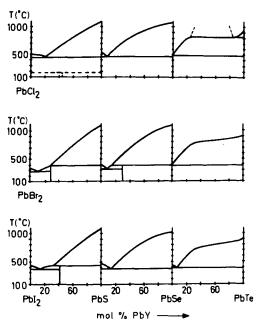


Fig. 32. Phase diagrams of the systems PbY-PbX₂ (Y = S, Se, or Te; X = Cl, Br, or I). (Redrawn from A. V. Novoselova, I. N. Odin, and B. A. Popovkin, *Russ. J. Inorg. Chem.* 14, 1402 (1969), Fig. 1, p. 1403.)

 $Pb_7S_2Br_{10}$ and $Pb_5S_2I_6$ as the only thermodynamically stable lead sulfide halides. They decompose peritectically at $381^{\circ}C$ ($Pb_7S_2Br_{10}$) and $418^{\circ}C$ ($Pb_5S_2I_6$), and their composition has been confirmed by structure analyses. No compound exists in the eutectic system $PbS-PbCl_2$ (26, 302, 394, 401, 412). A phase having the composition Pb_4SCl_6 , which is isotypic with Pb_4SeBr_6 (196, 302), can, however, be obtained by quenching a melt of this composition, and it may be stable at tempera-

TABLE XXII
CRYSTALLOGRAPHIC DATA FOR LEAD CHALCOGENIDE HALIDES

Compound	Symmetry	(Å)	<i>b</i> (Å)	c (Å)	β (degrees)	z	Space group	Ref.
$Pb_{\bullet}SCl_{\bullet}^{a}$	Orthorhombic	4.23	14.96	9.22		2	Imm2	196,302
$Pb_7S_2Br_{10}$	Hexagonal	12.273		4.319		1	$P6_3/m$	196
$Pb_5S_2I_6$	Monoclinic	14.338	4.437	14.552	98.04	2	C2/m	196
Pb₄SeBr ₆	Orthorhombic	4.361	15.780	9.720		2	Imm	196

a Structure not determined; isotypic with Pb₄SeBr₆.

tures below 180°C (247, 250, 302). All other lead sulfide halides mentioned in the literature seem to be metastable with respect to the binary phases. Typically, they are found as precipitates obtained from lead salts in solution. Thus far, only some of them have been identified as single phases by their X-ray patterns, as, for instance, Pb₃S₂Br₂ [2PbS·PbBr₂, (302)], Pb₂SI₂, and Pb₂SBr₂ (164). Such "precipitation reactions" were discussed in (203) and (302). The numerous reports that appeared before 1964 are cited in (145).

- b. Lead Selenide Halides. No ternary compound exists in the eutectic systems PbSe-PbCl₂ (247, 250) and PbSe-PbI₂ (246, 247). The only stable lead selenide halide has been found in the peritectic system PbSe-PbBr₂ (247, 249), but, in contrast to the data in these studies, the true composition of the ternary is Pb₄SeBr₆, as has been shown by the synthesis of single crystals (302) and a structure determination (196).
- c. Lead Telluride Halides. No ternary compounds have been observed in the systems that PbTe forms with PbCl₂ [monotectic (247, 252)], PbBr₂ [eutectic (247, 249)], and PbI₂ [eutectic (43, 247, 251)]. The same holds for the systems PbI₂–TeI₄ [eutectic (212, 332)], PbI₂–Te (256), and PbTe–I [not quasibinary (211)]. In the eutectic system PbTe–TeI₄, an incongruently melting compound having the composition Pb₃Te₅I₈ has been observed, and confirmed as a single phase by X-ray diffraction (42).

2. Preparative Methods

The stable compounds Pb₇S₂Br₁₀, Pb₅S₂I₆, Pb₄SeBr₆, and Pb₃Te₅I₈ can be obtained in a polycrystalline form by annealing stoichiometric amounts of the binary phases just below the peritectic temperatures of 381, 418, 383, and 385°C, respectively. Pure, and well recrystallized, Pb₄SCl₆ is formed by quenching a melt of the composition PbS·3PbCl₂ after annealing at 600°C (302). Single crystals of the sulfide and selenide halides can be prepared by hydrothermal syntheses in the respective hydrohalic acids (300, 302; see also, Section II,D,2). The crystallization conditions of Pb₅S₂I₆ in the system Pb-S-I-R-H₂O, R being a solvent, have been investigated (226, 429). So far, few of the metastable sulfide halides have been prepared in pure form by precipitation from solution. A phase of the composition 2PbS·PbBr₂ has been isolated by dilution of a solution prepared from PbS and hydrobromic acid (302). Another example is the phase Pb₂SI₂, formed by the reaction of H₂S with a solution of KPbI₃ in acetone (164).

3. Crystallographic Data

The crystal structures of Pb₄SeBr₆, Pb₅S₂I₆, and Pb₇S₂Br₁₀ have been determined from single-crystal, X-ray analyses (196). The unit-cell data are given in Table XXII. The compounds have common structural features with respect to the pure halides of lead. In Pb₄SeBr₆, all of the Pb atoms are coordinated by a trigonal prism of Br (Se) atoms. Additional neighbors above the prism faces complete the coordination number to 7, 8, or 9. In Pb₅S₂I₆, some of the Pb atoms are surrounded by 6 I + 1 S, or 5 I + 3 S, in the same, extended, trigonal, prismatic arrangement, and others occupy the centers of PbI₆ octahedra. In Pb₇S₂Br₁₀, which is isostructural with Th₇S₁₃ (417), the Pb atoms are coordinated by 8, or 9, nonmetal atoms in a trigonal-prismatic 6 + 2, or 6 + 3, coordination. Part of the metal and part of the nonmetal positions show a statistical occupancy. The types of coordination in the

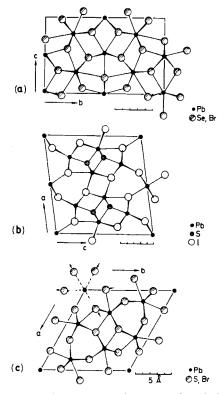


Fig. 33. Structure relationships and coordinations of lead chalcogenide halides: a, Pb₄SeBr₆; b, Pb₅S₂I₆; c, Pb₇S₂Br₁₀. (Redrawn from B. Krebs, Z. Anorg. Allg. Chem. **396**, 137 (1973), Figs. 1; 2, and 3, pp. 141, 147, and 148.)

three structures are given in Fig. 33, a-c. The compound Pb₄SCl₆ is isotypic with Pb₄SeBr₆. In the case of the bromides Pb₇S₂Br₁₀ and Pb₄SeBr₆, unusually high temperature-factors for the lead atoms have been observed (196) that indicate an incomplete occupancy of the metal atoms. For both compounds, a homogeneity range has been reported in the literature (247, 249).

4. Physical Properties

Reflection spectra of some sulfide and selenide halides have been measured (302, 303). The compounds are assumed to be semiconductors. Their optical band-gaps are found to be Pb_4SeBr_6 , 1.6 eV; $Pb_5S_2I_6$, ~ 2 eV; $Pb_7S_2Br_{10}$, ~ 2 eV; and Pb_4SCl_6 , 2.5 eV. The reflection spectra of Pb_2SI_2 and Pb_2SBr_2 were reported to correspond to those of $Pb_5S_2I_6$ and $Pb_7S_2Br_{10}$ (164).

XII. Group VA

A. NITROGEN AND PHOSPHORUS

As in the case of Group IVA, combinations with these typical non-metals will not be treated in detail insofar as nitrogen compounds are concerned. Of interest with respect to this review are the highly conducting compounds that are obtained by the room-temperature reaction of tetrasulfur tetranitride with halogens, e.g., $(SNBr_{0.4})_x$ (1, 366, 423).

Phosphorus thiohalides are reviewed in (146), and, with more relevance to this review, in (407). Four structural types exist. These are as follows. (i) PSX₃ [X = Cl (203), Br]: tetrahedral molecules S=PX₃; (ii) P₂S₂I₄ (90) and P₂Se₂I₄ (25), probably I₂YP-PYI₂; (iii) P₂S₅Br₄ and P₂S₄Br₂. The structure of the latter, formed by the action of Br₂ on P₄S₆, is known. It consists of a P₂S₄ ring in a skew conformation, each P being attached to two atoms, either Br or S (114). (iv) P₄S₃I₂ and P₄Se₃I₂. The former exists in two forms. α -P₄S₃I₂, prepared in CS₂ solution from the elements, consists of one six- and two five-membered rings in different relative arrangements of the P and S atoms as compared with P₄S₃ (413). β -P₄S₃I₂, which forms by the reaction of P₄S₃ with I₂, has a structure closely related to that of P₄S₃ (268), and is isostructural with P₄Se₃I₂ (267).

B. ARSENIC

Although arsenic is a nonmetal, the chalcogenide halides of this element bear a strong relationship to the antimony and bismuth systems, and will therefore be treated separately.

Numerous compounds are mentioned in the literature, but only in a few cases, however, was their existence based on X-ray powder patterns or the preparation of single crystals: AsSI and AsSeI (74, 76, 79, 98); As₄Te₅I₂ (75, 77, 79, 98) and As₈Te₇I₅ (77). The preparation of these compounds from the elements or binary arsenides requires a special annealing treatment in order to overcome the glassy state. Single crystals of AsSI, AsSeI, and As₄Te₅I₂ have been obtained by sublimation of the polycrystalline material at temperatures below 200°C in a vertical-gradient furnace (79); AsSI has also been obtained by hydrothermal synthesis (282). With the exception of As₄Te₅I₂, which is said to be cubic (77), no crystallographic data are available for the arsenic chalcogenide halides. Phase diagrams of these systems, as far as they have been published, are included in Tables XXV-XXIX. In contrast to the antimony and bismuth compounds, the crystalline material has not attracted any attention with regard to its physical properties.

Vitreous Semiconductors

The main interest in these systems has focused on the glass-forming regions, because of the search for vitreous semiconductors. This category of glasses is sometimes referred to as "chalcogenide glasses" (232), distinguished from the oxide type of glasses by their high electronic conductivity and absence of ionic conductivity. They constitute an extensive group of materials whose optical, electrical, and other properties may vary with composition within a fairly wide range. Many of them are typical semiconductors whose distinctive features are the absence of long-range order, their homogeneity, the independence of their properties on small amounts of impurities, and small mobility of charge carriers. For further study of this subject, a chapter on glasses in a book by Krebs (195), and, especially, a review article by Kolomiets (190), should be of interest.

Most of the contributions on arsenide systems have been made by Russian scientists, and their publications are not available in English. An X-ray diffraction study (277), viscosity and structure investigation (78) of the system $As_2Y_3-AsI_3$ (Y = S,Se), and optical and magneto-optical properties of the systems As-S-I and As-S-Br (60) appeared in the translation "Inorganic Materials." A good insight into the situa-

tion is provided by the extensive work on As-Te-I glasses by Quinn and Johnson (295), where many references may be found.

C. Antimony and Bismuth

Chalcogenide halides of antimony and bismuth have been known since the end of the last century, mainly through contributions by Ouvrard and Schneider. With the exception of BiSeCl, only thiohalides were reported. The early work is summarized in (147) (Sb, before 1948) and (148) (Bi, before 1927), and it will only occasionally be dealt with. Beyond that, these materials had not found much interest.

However, the situation changed dramatically with the discovery of the photoconductivity of SbSI in 1960 (243) and its ferroelectric properties (117). Innumerable publications on the chalcogenide halides of antimony and bismuth then appeared, and are still appearing, with the result that these compounds, and, especially, SbSI, now belong to the most well known chalcogenide halides. As it is impossible to cover the whole field of these investigations in this review, especially where the physical properties, glassy systems, and films are concerned, these topics will only be mentioned. The bismuth and antimony compounds will be treated together, as they possess much similarity. Tables XXIII and XXIV list the chalcogenide halides of antimony and bismuth, the existence of which has been established.

In the early 1950s, in a systematic study, Dönges (106-108) discovered most of the chalcogenide halides of antimony and bismuth that are known today, and then solved their structures.

1. Preparative Methods

The chalcogenide halides in Tables XXIII and XXIV having a reference in the column "solid-state reactions" can be obtained in a polycrystalline form by annealing an intimate mixture of the respective chalcogenides M_2Y_3 and halides MX_3 in stoichiometric ratios in closed ampoules. Other ways of preparation that partially date back to the early work of Ouvrard and Schneider (especially for the thiochalcogenides), and that may still be of interest in special cases, are summarized in (147) (Sb) and (148) (Bi). Preparative work has since been devoted, however, to the preparation of single crystals for X-ray structure determinations and physical measurements. Small crystals, sufficiently large for X-ray work, can be obtained by the aforementioned method, provided that prolonged annealing-times are applied. The methods mentioned in Tables XXIII and XXIV are of greater importance.

TABLE XXIII
CHALCOGENIDE HALIDES OF ANTIMONY: PREPARATION, BIBLIOGRAPHY

Compound Sb ₄ S ₅ Cl ₂		References						
	Color	Melt growth	Vapor growth	Hydrothermal synthesis	Solid-state reactions			
	Red-brown				106			
SbSCl				279,282,283				
SbSBr	Orange	117,2 44	187	279,282,283,285,312	106			
SbSI	Red	38,117,163,	112,163,166,183,	279,280,282,283,285,312	106			
		220,235,391,421	236,255,281,418,425					
SbSeCl		•		282				
SbSeBr	Dark red	117,2 44	171,187	279,282,283,285	106			
SbSeI	Black	117,244	166,237,238	279,282-285	106,238			
SbTeBr		,		285				
SbTeI	Black	117	166,403	283,285,286	108			

TABLE XXIV								
CHALCOGENIDE	Halides	OF	BISMUTH:	PREPARATION,	Bibliography			

		References					
Compound	Color	Melt growth	Vapor growth	Hydrothermal synthesis	Solid-state reactions		
BiSCl	Red	117,244		279,282,283	106		
Bi ₁₉ S ₂₇ Cl ₃				, ,	193		
Bi ₄ S ₅ Cl ₂	Dark grey				194		
BiSBr	Dark red	117,244	191	279,282,283,285	106		
Bi, S27Br3	Black		192	219	192		
BiSI	Black	117,244		279,282,283,285	106		
Bi19S27I3			67,225	, , ,			
BiSeCl	Dark red	117		279,283	107		
BiSeBr	Black	117,244	171	279,283,285	107		
BiSeI	Black	117,244,398	172	279,283,285	107		
BiTeBr	Black		259,395	283,285	108,259		
BiTeI	Black	170,428	71,170,259	283,285	71,108,170,28		

- a. Melt growth. The method was applied by Nitsche et al. (243, 244). Single crystals in the form of needles up to 2 cm long have been obtained by slow cooling of the molten compounds at a rate of 5°C/h. The crystals are washed with dilute hydrochloric aicd to remove surplus trihalide, rinsed with alcohol, and dried (243). In the Bridgman–Stockbarger technique (55), the melt is homogenized in a pointed-growth ampoule and then lowered in a temperature gradient in a two-zone furnace (1 mm/h). The cylindrical ingot consists of densely packed, single-crystal needles whose axes, corresponding to the crystallographic c axis, are parallel to the ingot axis (38, 170, 244, 391, 398). The equipment used for BiTel (170) is shown in Fig. 34. The growth of SbSI under pressure has been reported (220). The melt need not necessarily have the stoichiometric composition. In some cases, an excess of the halogenide proved to be useful [flux technique (55), e.g., (170, 235, 391, 398, 421)].
- b. Vapor growth. The common feature of this method is simple sublimation in a closed tube. The tubes are placed, vertically or horizontally, in a two-zone furnace, with the starting material at the higher temperature. The method, first reported by Kern for SbSI (183), has been applied for a number of substances mainly by Horak and coworkers (71, 166, 170–172, 187, 191, 237, 238, 395; see also, Tables XXIII and XXIV, where experimental details may be found). The arrangement is similar to that depicted in Fig. 21 (Section VI,B,5).

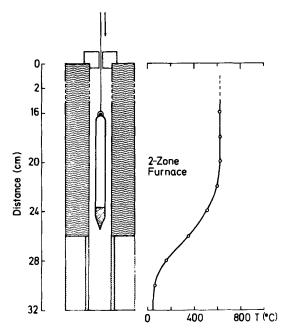


Fig. 34. Bridgman-Stockbarger technique for BiTeI. (Redrawn from J. Horak and H. Rodot, C. R. Acad. Sci., Ser. B. 267, 363 (1968), Fig. 2, p. 364.)

BiTeI has been grown by chemical transport from Bi₂Te₃ and BiI₃, using Br₂ as the transport agent (218).

c. Hydrothermal growth. The applicability of hydrothermal synthesis in acid solution (see Section II,D,2) to the growth of Group VA chalcogenide halides was first observed by Rau and Rabenau for SbSI and SbSBr (312). In succeeding years, the method was extensively studied by Popolitov and co-workers for a great number of compounds (see Tables XXIII and XXIV, and 279-287). They used standard autoclaves lined with Teflon for low temperatures (≤300°C) and quartz glass, titanium, and platinum for higher temperatures (282, 283). In order to evaluate optimal growth-conditions, they constructed Eh-pH diagrams for different A'-B'I-C'II-H2O systems (282, 285), and determined crystallization regions in such systems (284-286). Although, for practical purposes, the experimental parameters lie in the range of 200-400°C and pressures of 200-530 atm (283), the influence of high pressure has been investigated for the systems Sb-Se-I-R-H₂O (284), Sb-Te-I-R-H₂O (286), and Bi-Se-I-R-H₂O (287), R being a solvent such as HCl, HI, or C₂H₅OH, at pressures up to 2000 atm.

It was found that the region of formation of the chalcogenide halides depends on the pH, the solvent concentration, and the ratios of the initial components in the charge. Temperature and pressure have practically no influence on the phase formation in these systems (285). The use of bromine (283) and SeBr₂ as the solvent leads to a different mechanism, having different kinetics of formation and different growth-forms of the crystals (285).

The main problem in the crystal growth of antimony and bismuth chalcogenide halides is the growth of large, isometric crystals. In most of the experiments, a needle morphology predominated, with the growth rate estimated to be more than 50 times larger parallel the c direction than perpendicular to it (227). This growth-rate anisotropy seems to be an inherent characteristic of the material (235). For the growth of SbSI from the vapor phase, the relationship between the morphology of the crystals and the condition of the crystallization process was investigated (112). It has been found (418) that isometric crystals up to $5 \times 7 \times 10$ mm³ may be grown from the vapor on a seed by applying crystallization by temperature-gradient reversal in a Scholz ampoule (348–350) geometry. Principally, the Scholz apparatus is an axially symmetrical, vertical ampoule, the crystallization taking place in a zone along its axis, whereas the source material is placed on the periphery, concentric to this zone. The needle morphology of large SbSI crystals has also been successfully controlled by a modified, flux technique using an excess of SbI₃ as the solvent. By preventing additional, disturbing nucleation during growth, the crystals are forced to grow in thickness, yielding crystals up to 1 cm in diameter. The method seems also to be applicable to other chalcogenide halides (235).

2. Chemical Properties

The chalcogenide halides of antimony and bismuth are stable in air, and do not dissolve in H₂O or diluted acids. Their colors, mainly referring to single-crystal needles, are given in Tables XXIII and XXIV.

3. Phase Diagrams

Knowledge of phase diagrams is not only a prerequisite for efficient crystal-growth, but also provides information on the formation of solid solutions, in which, for example, physical properties may change continuously. The numerous publications concerning Group VA systems are summarized in Tables XXV-XXVII, together with the respective references and the most important information. Abbreviations used

 $SbSI - (Sb_2S_3)_x, x = 0.03 - 0.12, p-T$

T - x; SbSeI

p - T; SbTeI (3,27); T - x, SbTeI (397,403)

BiSBr, thermodynamics

BiSeI; reaction (399), T - x; BiSeI, $9Bi_2Se_3 \cdot BiI_3$

T - x; $Bi_{1.00}Te_{0.98}I_{1.02}$ (390).

T - x; BiTeI (170)

BiTeI, T - x; p - T; BiTeI (402),

BiSI, thermodynamics

Vapor pressure

Vapor pressure

System Investigations: Cuts Me ₂ Y ₃ -MeX ₃					
Ref.	Remarks				
76	T - x; AsSI				
<i>73</i>	T - x; no compound				
<i>76</i>	T - x; AsSeI				
<i>75</i>	$T - x$; $As_4Te_3I_2$				
38,255,391	T - x; SbSI				

TABLE XXV

System Investigations: Cuts Me₂Y₃-MeX₃

2

202

202

201

201

36,398,399

27,170,390,402

37, 103 3,27,75,397,403

System

As₂S₃-AsI₃
As₂Se₃-AsBr₃
As₂Se₃-AsI₃
As₂Te₃-AsI₃
Sb₂S₃-SbI₃
Sb₂S₃-SbSI

Sb₂Se₃-SbI₃

 $Sb_2Te_3-SbI_3$

 $Bi_2S_3-BiBr_3$ $Bi_2S_3-BiI_3$

Bi₂Se₃-BiBr₃

Bi₂Te₃-BiBr₃

Bi₂Te₃-BiI₃

 $Bi_2Se_3-BiI_3$

are T - x = temperature-concentration diagram; p - T = pressure-temperature diagram; s.s. = solid solution.

The composition and pressure of the gas phase over SbSI and Sb₃S₃ (392) and SbSeI and BiSeI (102) have been measured, leading to the thermodynamic values: $-\Delta H_{\rm I}^0 = 25.4 \pm 2.4$, 22.3 ± 2.7 , and 27.2 ± 2.4 kcal/mol, and $\Delta S^{\circ} = 26.9 \pm 1.3$, 31.1 ± 1.7 , and 33.4 ± 2.5 cal/(mol·deg) for SbSI, SbSeI, and BiSeI, respectively.

TABLE XXVI

System Investigations: MeYX - Me'Y'X'

System	Ref.	Remarks
AsSI-AsSeI	74	T - x; s.s.
AsSI-SbSI	74,333	T = x; eutectic (74), peritectic finite s.s. (333)
SbSBr-SbSI	61,136,151,396	s.s. (396) , $T - p - x (61)$
SbSI-SbSeI	31,32,294	T - x; s.s. (32)
SbSeI-SbTeI	33,245	T - x; s.s. (33)
SbSI-BiSI	30,137,245	T - x; s.s. (30)
SbTeI-BiTeI	31,34	T - x; finite s.s. (34)
SbSeI-BiSeI	29,35,214	T - x; s.s. (35)

System	Ref.	Remarks
SbI ₃ -Se	82	T - x, eutectic
SbSeI-Se	82	T - x, eutectic
Sb ₂ Se ₃ -I	82	T - x
Bi ₂ Te ₃ -I	28	$Bi_2Te_3 \cdot I_2$, $Bi_2Te_3 \cdot 3I_2$ (?)
As-Se-I	199	Vapor pressures
As ₄ Te ₅ I ₂ -As	77	T - x
Sb_2S_3-I	38	$T = x_1Sb_2S_3 \cdot I_2 \cdot Sb_2S_3 \cdot 3I_3$
BiTeI-Te	116	T - x, eutectic
BiI ₃ -Te	116	T - x, eutectic

TABLE XXVII
System Investigations: Miscellaneous

4. Crystallographic Data

The crystallographic data are summarized in Table XXVIII. The best known structure is that of the compounds belonging to the so-called SbSI type (see Table XXVIII), which was proposed by Dönges (106, 107), and confirmed for SbSBr (84), SbSI (153, 174, 184, 258), and BiSI (153).

Characteristic of this SbSI type is the formation of infinite, $(\mathrm{Sb_2S_2I_2})_\infty$ double-chains parallel to the b axis, as shown in Fig. 35 (notation: International Tables for X-ray Crystallography), which explains the needle-like shape of these crystals. The relationship to the needle-like sulfides $\mathrm{Sb_2S_3}$ and $\mathrm{Bi_2S_3}$, which crystallize in the same space-group, has been pointed out (106,153): one S of the sulfide is replaced by two halogens in such a way that the $(\mathrm{Me_4S_6})_\infty$ chains of the sulfides split into two $(\mathrm{Me_2S_2X_2})_\infty$ chains. The relationship to the sesquisulfide is even stronger for the $\mathrm{Bi_{19}S_{27}X_3}$ [X = Cl (193), Br (192,219), I (225)] compounds, which consist of $(\mathrm{Bi_4S_6})_\infty$ chains connected by the halogens and one extra Bi atom, leading to the formulation $\mathrm{Bi}(\mathrm{Bi_2S_3})_9\mathrm{X_3}$.

The phase transiton from a paraelectric to a ferroelectric state, most characteristic for the SbSI type compounds, has been extensively studied for SbSI, because of its importance with respect to the physical properties of this compound (e.g., 153, 173–177, 184, 257). The first-order transition is accompanied by a small shift of the atomic parameters and loss of the center of symmetry, and is most probably of a displacement nature. The true structure of Sb₄S₅Cl₂ (106), Bi₄S₅Cl₂ (194), and SbTeI (108, 403) is still unknown. In contrast to the sulfides and selenides of bismuth, BiTeBr (108) and BiTeI (108, 390) exhibit a layer structure similar to that of the CdI₂ structure, if the difference between Te, Br, and I (see Fig. 36) is ignored.

TABLE XXVIII

CRYSTALLOGRAPHIC DATA FOR ANTIMONY AND BISMUTH COMPOUNDS

Compound	Symmetry	а (Å)	b (Å)	с (Å)	$oldsymbol{eta}$ (degrees)	\boldsymbol{z}	Space group	Ref.
Sb ₄ S ₅ Cl ₂	Orthorhombic	10.53	9.38	11.08		4	Pnma (?)	367
SbSBr)		8.20	3.95	9.70)			
SbSI		8.49	4.16	10.10				
SbSeBr		8.30	3.95	10.20				
SbSeI		8.65	4.12	10.38				
BiSCl	Orthorhombic	7.70	4.00	9.87		4	Pnma	367
BiSBr		8.02	4.01	9.70				
BiSI		8.46	4.14	10.15				
BiSeBr		8.18	4.11	10.47		1		
BiSeI		8.71	4.19	10.45				
BiSeCl	Orthorhombic	12.37	18.10	4.08	,	12	Pmmm	367
SbTeI	Orthorhombic	9.18	10.8	4.23		4	Pmmm, Pnmm, Pmmn	108
SbTeI	Monoclinic	14.55	4.23	13.72	81.12	8	C2/c, Cc	403
BiTeBr)	** 1	4.23		6.47	ì) ,	pā 1	100
BiTel	Hexagonal	4.31		6.83	j	1	P3m1	108
Bi19S27Cl3		15.40		4.02	ì)		193
$Bi_{19}S_{27}Br_3$	Hexagonal	15.55		4.02		2/3	$P6_3$	219
Bi ₁₉ S ₂₇ I ₃	_	15.63		4.02	·	i '		225
Bi ₄ S ₅ Cl ₂	Rhombohedral	19.80		12.4		15	R32, R3m, R3m	194

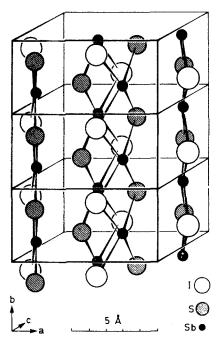


Fig. 35. $[Sb_2S_2I_2]_{\infty}$ double chain in the structure of SbSI. (Redrawn from E. Dönges, Z. Anorg. Allg. Chem. 263, 112 (1950), Fig. 11, p. 129.)

5. Physical Properties

The semiconducting properties of the compounds of the SbSI type (see Table XXVIII) were predicted by Mooser and Pearson in 1958 (228). They were first confirmed for SbSI, for which photoconductivity was found in 1960 (243). The breakthrough was the observation of ferroelectricity in this material (117) and other SbSI type compounds (244; see Table XXIX), in addition to phase transitions (184), nonlinear optical behavior (156), piezoelectric behavior (44), and electromechanical (183) and other properties. These photoconductors exhibit abnormally large temperature-coefficients for their band gaps; they are strongly piezoelectric. Some are ferroelectric (see Table XXIX). They have anomalous electrooptic and optomechanical properties, namely, elongation or contraction under illumination. As already mentioned, these fields cannot be treated in any detail in this review; for those interested in ferroelectricity, review articles (224, 352) are mentioned. The heat capacity of SbSI has been measured from -180 to +40°C and, from these data, the excess entropy of the ferro-paraelectric transition

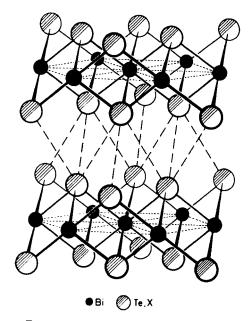


Fig. 36. Structure of BiTeBr and BiTeI.

has been calculated to be $\Delta S = 53 \text{ mcal/(mol deg)}$, plausible for a displacement transition (384; see also, Crystallographic Data).

¹²¹Sb Mössbauer spectra of SbSBr, SbSI, SbSeBr, SbSeI, and SbTeI have been obtained at 4.2 K. The quadrupole coupling-constant of the iodides decreases in the order SbSI > SbSeI > SbTeI, becoming nega-

TABLE XXIX
Some Physical Properties of Antimony and Bismuth Chalcogenide Halides

Compound	Band gap (eV)	Ref.	Magnetic sus- ceptibility ref.	Curie point (°C)	Ref.
SbSBr	2.22	6	221	-180	244
SbSI	2.12	6	41,221	22	117
SbSeBr	1.84	169	ŕ		
SbSeI	1.61	6	221		
BiSCl	1.89	39	221		
BiSBr	1.88	169		-170	244
BiSI			221	-160	244
BiSeBr			221		
BiSeI	1.32	40	41,221		
BiTeBr	0.54	293	,		
BiTeI	0.38	293	41,420		

tive for the last (105). A selection of band gaps of MXY compounds is included in Table XXIX. Although somewhat differing values are reported for some of the compounds, and the uncertainty is ~ 0.2 eV, the sequence of decreasing band gaps shows that it is mainly the decrease in electronegativity differences that influences the band gap (149; see also, Section II,A,5).

With respect to the physical properties mentioned, band-structure calculations have attracted considerable interest, e.g., for SbSBr, SbSI, and SbSeI (234). For the compounds having reference 221 in column 4 of Table XXIX, a temperature-independent diamagnetism has been found, with values of about 10^{-7} cm⁻³g⁻¹ between 77 and 340 K. A small temperature-dependence is exhibited by BiTeI, a narrow-gap semiconductor (41). The anisotropy of the magnetic susceptibility has been studied for SbSI, BiSeI, and BiTeI (41, 420).

Appendix

After submitting the manuscript some interesting new results were published, the most important of which are presented here. Less relevant contributions are not specifically mentioned. They are all listed in the Appendix References (420-433) and referred to by number herein.

- II. Copper: The first two structures of copper selenide halides have now been solved. CuSe₂Cl turned out to be a true isotype of CuTe₂Cl, containing infinite, pseudofourfold, selenium helices (433). The crystals are systematically twinned, which is the reason for the wrong lattice constants given earlier (307). CuSe₃Br is unique by the occurrence of chair-type Se₆-rings (424). As in CuSe₂Cl, the copper atoms are coordinated by two selenium and two halogen atoms in a distorted tetrahedral arrangement.
- II. Silver: According to DTA data and conductivity data, Ag₃SBr and Ag₃SI undergo phase transitions at 120 and 163 K, respectively. In Ag₃SI the transition to the low-temperature phase is accompanied by the appearance of additional x-ray reflections (427).
- VI. Niobium: Two new niobium selenide halides, Nb₃Se₅Cl₇ and Nb₃Se₅Br₇, were prepared by Rijnsdorp and Jellinek (431). Nb₃Se₅Cl₇ was obtained by annealing NbSe₂Cl₂ and NbCl₄ in a 2:1 ratio at 530°C for 2-3 weeks. The isotypic bromine compound was formed by thermal decomposition of NbSe₂Br₂ in the presence of NbSeBr₃. The compounds are monoclinic with a = 7.599, b = 12.675, c = 8.051 Å, $\beta = 106.27$ ° (space group P2₁/m) and a = 7.621, b = 12.833, c = 8.069 Å, $\beta = 1.061$

106.21°, respectively. The crystal structure and XPS spectra show Nb₃Se₅Cl₇ to be a mixed valence compound which can be formulated as [Nb₂⁴⁺Nb₅₊(Se₂)₂²⁻Se²⁻Cl₇-]. [Nb₂Se₄]-cages with Nb-Nb pairs (Nb-Nb = 2.94 Å), as in NbSe₂Cl₂ (347, see Fig. 20), are interconnected by faces of three bridging chlorines to form linear chains of [Nb₂⁴⁺(Se₂)₂²⁻Cl₅-], to which side chains [Nb⁵⁺Se²⁻Cl₂-] are attached. In accordance with these results, the compound is a diamagnetic semiconductor with a band gap (1.49 eV at 300 K) very close to that of NbSe₂Cl₂.

Bullett has calculated band structures and densities of states for NbSe₂Cl₂, NbSe₂Cl₂, NbSe₅Cl₇, and NbSe₄I_{0.33} on the basis of the geometries of the Nb₂Y₄-clusters. Metal-metal bonding results in very narrow bands largely composed of niobium d-orbitals at the band edges (422).

VII. Molybdenum: A recent review of molybdenum chalcogenide halides is contained in a paper of Tsigdinos (432).

XII. Antimony: Of various new papers on the crystal growth of SbSI, the one by Ishikawa et al. (425) is worth mentioning, since it describes a new device especially designed to avoid formation of hollows in vaporgrown crystals.

XII. Bismuth: As shown by a recent single-crystal structure determination by Krämer (426), Bi $_4$ S $_5$ Cl $_2$ crystallizes in the rhombohedral space group R $\bar{3}$. The Cl $^-$ and S $^{2-}$ ions display a light-packed framework of statistically distributed anions. Unusually high coordination numbers of eight and nine for bismuth are attained by extended planar-pyramidal and trigonal-prismatic coordinations, i.e., three additional ions are located either below the basal planes of the pyramids or above the rectangular faces of the prisms with cation-anion distances ranging from 2.62 to 3.66 Å.

REFERENCES

- Akhtar, M., Kleppinger, J., MacDiarmid, A. G., Milliken, J. A., Moran, M. J., Chiang, C. K., Cohen, M. J., Heeger, A. J., and Peebles, D. L., J. Chem. Soc., Chem. Commun. p. 473 (1977).
- Alekhina, N. S., Grekov, A. A., Kachalov, N. P., Palandov, I. N., Syrkin, L. N., and Chekhunova, N. P., Poluprovodn. Segnetoelektr. p. 90 (1973).
- Aleshin, V. A., Valitova, N. R., Popovkin, B. A., and Novoselova, A. V., Russ. J. Phys. Chem. 48, 1421 (1974).
- v. Alpen, U., Fenner, J., Marcoll, J. D., and Rabenau, A., Electrochim. Acta 22, 801 (1977).
- v. Alpen, U., Fenner, J. Predel, B., Rabenau, A., and Schluckebier, G., Z. Anorg. Allg. Chem. 438, 5 (1978).

- Alward, J. F., Fong, C. Y., El Batanouny, M., and Wooten, F., Solid State Commun. 25, 307 (1978).
- 7. Andreev, Yu. V., and Loginova, M. V., Russ. J. Inorg. Chem. 15, 1761 (1970).
- 8. Atherton, M. J., and Holloway, J. H., Adv. Inorg. Radiochem. 22, 171 (1979).
- 9. Aurivillius, K., Acta Chem. Scand. 4, 1413 (1950).
- 10. Aurivillius, K., Ark. Kemi 26, 497 (1967).
- 11. Baghlaf, A. O., M.Sc. Thesis, University of Manchester, England (1972).
- 12. Baghlaf, A. O., Ph.D. Thesis, University of Manchester, England (1975).
- 13. Baghlaf, A. O., and Thompson, A., J. Less-Common Met. 53, 291 (1977).
- 14. Baroni, A., Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 29, 76 (1939).
- 15. Batsanov, S. S., and Abaulina, L. I., Izv. Sib. Otd. Akad. Nauk SSSR p. 67 (1961).
- Batsanov, S. S., Derbeneva, S. S., and Shestakova, N. A., Inorg. Mater. 2, 1945 (1966).
- 17. Batsanov, S. S., and Doronina, L. M., Inorg. Mater. 2, 423 (1966).
- Batsanov, S. S., and Gorogotskaya, L. I., Izv. Sib. Otd. Akad. Nauk SSSR p. 42 (1959).
- 19. Batsanov, S. S., and Gorogotskaya, L. I., Russ. J. Inorg. Chem. 4, 24 (1959).
- Batsanov, S. S., Kolomiichuk, V. N., Derbeneva, S. S., and Erenburg, R. S., Inorg. Mater. 9, 979 (1973).
- Batsanov, S. S., and Petrova, I. Kh., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 4, 349 (1961).
- 22. Batsanov, S. S., and Rigin, V. I., Dokl. Chem. 158, 1094 (1964).
- 23. Batsanov, S. S., Ruchkin, E. D., and Khripin, L. A., Inorg. Mater. 2, 88 (1966).
- 24. Batsanov, S. S., Shestakova, N. A., and Khripin, L. A., Dokl. Chem. 152, 729 (1963).
- 25. Baudler, M., Voiland, B., and Valpertz, H. W., Chem. Ber. 106, 1049 (1973).
- 26. Bell, M. C., and Flengas, S. N., J. Electrochem. Soc. 113, 27 (1966).
- Belotskii, D. P., Dodik, S. M., Antipov, I. N., and Nefedova, Z. I., Ukr. Khim. Zh. 36, 897 (1970).
- 28. Belotskii, D. P., Dodik, S. M., and Demkiv, O. A., Ukr. Khim. Zh. 38, 766 (1972).
- 29. Belotskii, D. P., Gavrilenko, N. V., and Lapshin, V. F., Khal'kogenidy p. 88 (1974).
- Belotskii, D. P., Gavrilenko, N. V., Zhornovyi, I. V., Kulikovskaya, S. M., Kormish,
 M. E., Noval'kovskii, N. P., and Onipko, A. F., Inorg. Mater. 14, 159 (1978).
- Belotskii, D. P., Gorchinskii, N. I., Dodik, S. M., Boichuk, R. F., Noval'kovskii, N. P., and Smirnov, A. V., Khal'kogenidy p. 83 (1974).
- 32 Belotskii, D. P., Gorchinskii, N. I., and Noval'kovskii, N. P., Dopov. Akad. Nauk Ukr. RSR, Ser. B 34, 1079 (1972).
- 33. Belotskii, D. P., Gavrilenko, N. V., Noval'kovskii, N. P., Zhornovyi, I. V., Katerinyuk, D. M., Levenets, M. D., and Gorchinskii, N. I., *Inorg. Mater.* 10, 25 (1974).
- Belotskii, D. P., Kulikovskaya, S. M., Gavrilenko, N. V., Noval'kovskii, N. P., and Legeta, L. V., Inorg. Mater. 13, 529 (1977).
- 35. Belotskii, D. I., and Lapshin, V. F., Inorg. Mater. 7, 1727 (1971).
- 36. Belotskii, D. P., Lapshin, V. F., and Boichuk, R. F., Inorg. Mater. 7, 1724 (1971).
- Belotskii, D. P., Lapshin, V. F., Boichuk, R. F., and Noval'kovskii, N. P., *Inorg. Mater.* 8, 499 (1972).
- 38. Belyaev, L. M., Lyakhovitskaya, V. A., Netesov, G. B., Mokhosoev, M. V., and Aleikina, S. M., Inorg. Mater. 1, 1969 (1965).
- 39. Belyaev, A. D., Slivka, V. Yu., and Chepur, D. V., Ukr. Fiz. Zh. 13, 162 (1968).
- 40. Bercha, D. M., and Zayachkovskii, M. P., Sov. Phys. Solid State 14, 766 (1972).
- Bercha, D. M., Zayachkovskii, M. P., Zayachkovskaya, N. F., and Maslyuk, V. T., Sov. Phys. Solid State 17, 1393 (1975).

- Berg, L. G., and Malkova, T. I., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 12, 691 (1969).
- Berg, L. G., Malkova, T. I., and Pavlova, A. K., Russ. J. Inorg. Chem. 12, 107 (1967).
- Berlincourt, D., Jaffe, H., Merz, W. J., and Nitsche, R., Appl. Phys. Lett. 4, 61 (1964).
- 45. Biltz, W., and Ehrlich, P., Z. Anorg. Allg. Chem. 234, 97 (1937).
- 46. Blachnik, R., and Alberts, J. E., Z. Naturforsch., Teil B 31, 163 (1976).
- 47. Blachnik, R., and Hoppe, A., J. Chem. Thermodyn. 8, 631 (1976).
- 48. Blachnik, R., and Kasper, F. W., Z. Naturforsch., Teil B 29, 159 (1974).
- 49. Blachnik, R., and Kudermann, G., Z. Naturforsch., Teil B 28, 1 (1973).
- 50. Bode, H., and Hettwer, E., Z. Anal. Chem. 173, 285 (1960).
- 51. Bodroux, F., C. R. Acad. Sci. 130, 1398 (1900); Bull. Soc. Chim. Fr. 23, 502 (1900).
- Boncheva-Mladenova, Z., and Aramov, N., Proc. Int. Conf. Therm. Anal., 4th, 1974,
 p. 349, 1975.
- Boncheva-Mladenova, Z., Aramov, N., and Raikowa, D., Z. Anorg. Allg. Chem. 401, 306 (1973).
- Brebrick, R. F., in "Progress in Solid State Chemistry" (H. Reiss, ed.), Vol. 3, pp. 213-264. Pergamon, Oxford, 1967.
- Brice, J., "The Growth of Crystals from Liquids", pp. 4-5. North-Holland Publ., Amsterdam, 1973.
- Britnell, D., Drew, M. G. B., Fowles, G. W. A., and Rice, D. A., Inorg. Nucl. Chem. Lett. 9, 415 (1973).
- Britnell, D., Fowles, G. W. A., and Mandyczewsky, R., J. Chem. Soc., Chem. Commun. p. 608 (1970).
- Britnell, D., Fowles, G. W. A., and Rice, D. A., J. Chem. Soc., Dalton Trans. p. 2191 (1974).
- 59. Brukl, A., Monatsh. Chem. 45, 471 (1924).
- Burkov, V. I., Dembovskii, S. A., Kizel', V. A., Kozlova, N. L., Krasilov, Yu. I., and Chernov, A. P., Inorg. Mater. 9, 333 (1973).
- Buturlakin, A., Gerzanich, E. I., Chepur, D. V., and Groshik, I. I., Sov. Phys. J. 19, 1333 (1976).
- 62. Capitaine, H., J. Prakt. Chem. 18, 422 (1839).
- 63. Carkner, P. M., Thesis, University of New Hampshire, 1975.
- 64. Carkner, P. M., and Haendler, H. M., J. Solid State Chem. 18, 183 (1976).
- 65. Carkner, P. M., and Haendler, H. M., J. Cryst. Growth 33, 196 (1976).
- 66. Carlson, E. H., J. Cryst. Growth 1, 271 (1967).
- 67. Carlson, E. H., J. Cryst. Growth 12, 162 (1972).
- 68. Carter, F. L., Metallurg. Soc. Conf., 15th, p. 245, 1961.
- 69. Cava, R. J., Reidinger, F., and Wuensch, B. J., Solid State Commun. 24, 411 (1977).
- 70. Chandrasekhar, H. R., and Genzel, L., Solid State Commun. 25, 73 (1978).
- 71. Chepur, D. V., Gorak, Ya. A., Kovach, D. Sh., Turyanitsa, I. D., Borets, A. N., and Yatskovich, I. I., Inorg. Mater. 6, 336 (1970).
- 72. Cherin, P., and Unger, P., Acta Crystallogr. 23, 670 (1967).
- Chernov, A. P., Borisenkova, A. F., and Dembovskii, S. A., *Inorg. Mater.* 11, 822 (1975).
- Chernov, A. P., Dembovskii, S. A., Borisenkova, A. F., and Reis, I. A., *Inorg. Mater.* 10, 1323 (1974).
- 75. Chernov, A. P., Dembovskii, S. A., and Chubirka, L. A., Inorg. Mater. 6, 411 (1970).
- 76. Chernov, A. P., Dembovskii, S. A., and Kirilenko, I. A., Inorg. Mater. 6, 228 (1970).

- Chernov, A. P., Dembovskii, S. A., and Luzhnaya, N. P., Russ. J. Inorg. Chem. 20, 1208 (1975).
- 78. Chernov, A. P., Dembovskii, S. A., and Makhova, V. I., Inorg. Mater. 6, 722 (1970).
- Chernov, A. P., Kanishcheva, A. S., and Dembovskii, S. A., *Inorg. Mater.* 5, 320 (1969).
- 80. Chernykh, S. M., and Safonov, V. V., Russ. J. Inorg. Chem. 23, 465 (1978).
- Chernykh, S. M., Safonov, V. V., Ksenzenko, V. I., Korshunov, B. G., and Fedorov,
 P. I., Russ. J. Inorg. Chem. 21, 1590 (1976).
- Chervenyuk, G. I., Niiger, F., Belotskii, D. P., and Noval'kovskii, N. P., Inorg. Mater. 13, 806 (1977).
- 83. Chevrel, R., Sergent, M., and Prigent, J., J. Solid State Chem. 3, 515 (1971).
- 84. Christofferson, G. D., and McCullough, J. D., Acta Crystallogr. 12, 14 (1959).
- 85. Collin, G., Dagron, C., and Thevet, F., Bull. Soc. Chim. Fr. p. 418 (1974).
- 86. Corbett, J. D., Prog. Inorg. Chem. 21, 129 (1976).
- 87. Corbett, J. D., McMullan, R. K., and Prince, D. J., Inorg. Chem. 10, 1749 (1971).
- 88. Corbett, J. D., and Prince, D. J., Inorg. Chem. 9, 2731 (1970).
- 89. Couch, T. W., Lokken, D. A., and Corbett, J. D., Inorg. Chem. 11, 357 (1972).
- 90. Cowley, A. H., and Cohen, S. T., Inorg. Chem. 3, 780 (1964).
- 91. Cueilleron, J., and Hillel, R., Bull. Soc. Chim. Fr. p. 3635 (1968).
- 92. Dagron, C., C. R. Acad. Sci., Ser. C 262, 1575 (1966).
- 93. Dagron, C., C. R. Acad. Sci. 260, 1422 (1965).
- 94. Dagron, C., Etienne, J., and Laruelle, P., Int. Conf. Solid Comp. Trans. Elements, 2nd, 1967.
- 95. Dagron, C., and Thevet, F., C. R. Acad. Sci., Ser. C 271, 677 (1977).
- 96. Dagron, C., and Thevet, F., Ann. Chim. 6, 67 (1971).
- 97. Defagr, E. D., Ann. Chim. Phys. 7, 266 (1901).
- 98. Dembovskii, S. A., and Chernov, A. P., Inorg. Mater. 4, 1079 (1968).
- Dembovskii, S. A., Kirilenko, V. V., and Buslaev, Yu. A., Inorg. Mater. 7, 290 (1971).
- 100. Dembovskii, S. A., and Popova, N. P., Inorg. Mater. 6, 116 (1970).
- 101. Dmitrievich, D. S., and Vasil'evich, M. A., Mater. Vses. Nauchn. Stud. Konf. Khim., 13th p. 39, 1975.
- 102. Dolgikh, V. A., Popovkin, B. A., Ivanova, G. I., and Novoselova, A. V., Inorg. Mater. 11, 548 (1975).
- 103. Dolgikh, V. A., Popovkin, B. A., Odin, I. N., and Novoselova, A. V., Inorg. Mater. 9, 823 (1979).
- 104. Donaldson, J. D., Laughlin, D. R., and Silver, J., J. Chem. Soc. p. 996 (1977).
- Donaldson, J. D., Kjekshus, A., Nicholson, D. G., and Southern, J. T., Acta Chem. Scand., Ser. A 29, 220 (1975).
- 106. Dönges, E., Z. Anorg. Allg. Chem. 263, 112 (1950).
- 107. Dönges, E., Z. Anorg. Allg. Chem. 263, 280 (1950).
- 108. Dönges, E., Z. Anorg. Allg. Chem. 265, 56 (1951).
- 109. Drew, M. G. B., and Mandyczewsky, R., J. Chem. Soc., A p. 2815 (1970).
- 110. Durovic, S., Acta Crystallogr. 24, 1661 (1968).
- 111. Durovic, S., Chem. Zvesti 22, 858 (1968).
- 112. Dziuba, Z., J. Cryst. Growth 35, 340 (1976).
- 113. Ehrlich, P., and Siebert, W., Z. Anorg. Allg. Chem. 301, 288 (1959).
- 114. Einstein, F. W. B., Penfold, B. R., and Tapsell, Q. T., Inorg. Chem. 4, 186 (1965).
- 115. Etienne, J., Bull. Soc. Fr. Mineral. Cristallogr. 92, 134 (1969).

- 116. Evdokimenko, L. T., and Tsypin, M. I., Inorg. Mater. 7, 1172 (1971).
- 117. Fatuzzo, E., Harbeke, G., Merz, W. J., Nitsche, R., Roetschi, H., and Ruppel, W., Phys. Rev. 127, 2034 (1962).
- 118. Feltz, A., Buettner, H. J., Lippmann, F. J., and Maul, W., J. Non-Cryst. Solids 8– 10, 64 (1972).
- 119. Fenner, J., Naturwissenschaften 63, 244 (1976).
- 120. Fenner, J., Acta Crystallogr., Sect. B 32, 3084 (1976).
- 121. Fenner, J., Z. Naturforsch., Teil B 33, 479 (1978).
- 122. Fenner, J., unpublished results
- 123. Fenner, J., to be published
- 124. Fenner, J., and Mootz, D., J. Solid State Chem. 24, 367 (1978).
- 125. Fenner, J., and Rabenau, A., Z. Anorg. Allg. Chem. 426, 7 (1976).
- 126. Fenner, J., and Schulz, H., Acta Crystallogr., Sect. B 35, 307 (1979).
- 127. Fischer, O., Proc. Int. Conf. Low Temp. Phys., 14th pp. 172-191, Elsevier, New York, 1975.
- 128. Flahaut, J., Laruelle, P., Dagron, C., Adolphe, C., Etienne, J., Ghemard, G., Loye, O., Rysanek, N., Savigny, N., and Thevet, F., Proc. Rare Earth Res. Conf., 11th pp. 947-953, 1974.
- 129. Fortunatov, N. S., and Timostschenko, N. I., Ukr. Khim. Zh. 31, 1078 (1965).
- 130. Fortunatov, N. S., and Timostschenko, N. I., Ukr. Khim. Zh. 35, 1207 (1969).
- Fowles, G. W. A., Hobson, R. J., Rice, D. A., and Shanton, K. J., J. Chem. Soc., Chem. Commun. p. 552 (1976).
- 132. Frueh, A. J., and Gray, N., Acta Crystallogr., Sect. B 24, 156 (1968).
- 133. Funke, K., Prog. Solid State Chem. 11, 345 (1975).
- 134. Gadzhiev, S. M., Bakhyshov, R. G., Suleimanov, D. M., and Kuliev, A. A., Russ. J. Phys. Chem. 45, 1518 (1971).
- 135. Geller, S., in "Solid Electrolytes" (S. Geller, ed.), pp. 51-65. Springer-Verlag, Berlin and New York, 1977.
- 136. Gerzanich, E. I., Inorg. Mater. 6, 1403 (1970).
- Gerzanich, E. I., Buturlakin, A. P., and Chepur, D. V., Izv. Akad. Nauk SSSR, Ser. Fiz. 39, 774 (1975).
- 138. Glukhov, I. A., Izv. Otd. Estestven. Nauk Akad. Nauk Tadzhik, SSR 24, 21 (1957).
- Glukhov, I. A., Davidyants, S. B., El'manova, N. A., and Yunusov, M. A., Russ. J. Inorg. Chem. 8, 47 (1963).
- Glukhov, I. A., Davidyants, S. B., Yunusov, M. A., and El'manova, N. A., Russ. J. Inorg. Chem. 6, 649 (1961).
- 141. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 34, "Quecksilber," 8th ed., Vol. B3, pp. 1034-1042, 1104-1109, 1169-1172. Verlag Chemie, Weinheim, 1968.
- 142. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 14, "Kohlenstoff," 8th ed., Vol. D6, pp. 143-161, 163, 165-171. Springer-Verlag, Berlin and New York, 1978.
- 143. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 15, "Silicium," 8th ed., Vol. B, pp. 753-754. Verlag Chemie, Weinheim, 1959.
- 144. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 46, "Zinn," 8th ed., Vol. C2, pp. 74-75, 78-79, 123-124, 209-211. Springer-Verlag, Berlin and New York, 1975.
- 145. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 47, "Blei," 8th ed., Vol. C2, pp. 605-607, Verlag Chemie, Weinheim, 1969.

- 146. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 16, "Phosphor," 8th ed., Vol. C, pp. 585-588, 590-596, 599-601, 603-604, 609. Verlag Chemie, Weinheim, 1965.
- 147. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 18, "Antimon," 8th ed., Vol. B3, pp. 548-550, 555. Gmelin Verlag, Clausthal-Zellerfeld, 1949.
- 148. "Gmelins Handbuch der Anorganischen Chemie," Syst. No. 19, "Wismut," 8th ed., Vol. B1, pp. 168-169, 175. Verlag Chemie, Weinheim, 1927.
- 149. Goodman, C. H. L., J. Phys. Chem. Solids 6, 305 (1958).
- 150. van Gool, W., Annu. Rev. Mater. Sci. 4, 311 (1974).
- Grekov, A. A., Malitskaya, M. A., and Fridkin, V. M., Sov. Phys. Crystallogr. 17, 504 (1972).
- 152. Gurrieri, S., Boll. Sedute Accad. Gioenia Sci. Nat. Catania 72, 667 (1960).
- 153. Haase-Wessel, W., Thesis, Göttingen, 1973.
- 154. Haase-Wessel, W., Naturwissenschaften 60, 474 (1973).
- 155. Haendler, H. M., Mootz, D., Rabenau, A., and Rosenstein, G., J. Solid State Chem. 10, 175 (1974).
- 156. Häfele, H. G., Wachernig, H., Irslinger, C., Grisar, R., and Nitsche, R., Phys. Status Solidi 42, 531 (1970).
- 157. Hagenmüller, P., and Rouxel, J., C. R. Acad. Sci. 250, 1859 (1960).
- 158. Hagenmüller, P., Rouxel, J., David, J., and Colin, A., C. R. Acad. Sci. 253, 667 (1961).
- 159. Hagenmüller, P., Rouxel, J., David, J., Colin, A., and LeNeindre, B., Z. Anorg. Allg. Chem. 323, 1 (1963).
- 160. Hahn, H., and Katscher, H., Z. Anorg. Allg. Chem. 321, 85 (1963).
- 161. Hahn, H., and Nickels, W., Z. Anorg. Allg. Chem. 304, 100 (1960).
- 162. Hahn, H., and Nickels, W., Z. Anorg. Allg. Chem. 314, 307 (1962).
- 163. Hamano, K., Nakamura, T., Ishibashi, Y., and Ooyane, T., J. Phys. Soc. Jpn. 20, 1886 (1965).
- 164. Hardt, H. D., and Scheepker, H., Naturwissenschaften 57, 39 (1970).
- 165. Hardy, A., and Cottreau, D., C. R. Acad. Sci., Ser. C 262, 739 (1966).
- 166. Havrankova, V., and Horak, J., Collect. Czech. Chem. Commun. 31, 1256 (1966).
- 167. Holzäpfel, G., and Rickert, H., in "Advances in Solid State Physics" (H. J. Queisser, ed.), Vol. XV, pp. 317-349. Pergamon/Vieweg, Braunschweig, 1975.
- 168. Holzäpfel, G., and Rickert, H., Naturwisschenschaften 64, 53 (1977).
- Horak, J., Kozakova, M., and Klazar, J., Collect. Czech. Czech. Chem. Commun. 37, 2309 (1972).
- 170. Horak, J., and Rodot, H., C. R. Acad. Sci., Ser. B 267, 363 (1968).
- 171. Horak, J., Turjanica, I. D., Klazar, J., and Kozakova, M., Krist. Tech. 3, 241 (1968).
- 172. Horak, J., Turjanica, I. D., and Nejezchleb, K., Krist. Tech. 3, 231 (1968).
- 173. Itoh, K., Matsunaga, H., and Nakamura, E., J. Phys. Soc. Jpn. 41, 1679 (1976).
- 174. Itoh, K., Ogusu, K., Shiozaki, Y., and Toyoda, K., Ferroelectrics 7, 79 (1974).
- 175. Iwata, Y., Fukui, S., Koyano, N., and Shibuya, I., J. Phys. Soc. Jpn. 21, 1846 (1966).
- 176. Iwata, Y., Koyano, N., and Shibuya, I., J. Phys. Soc. Jpn. 20, 875 (1965).
- 177. Iwata, Y., Koyano, N., and Shibuya, I., Annu. Rep. Res. React. Inst., Kyoto Univ. 9, 9 (1976).
- 178. Jander, G., and Brodersen, K., Z. Anorg. Allg. Chem. 264, 57 (1951).
- 179. Jander, G., and Brodersen, K., Z. Anorg. Allg. Chem. 264, 76 (1951).
- Karbanov, S., Boncheva-Mladenova, Z., and Aramov, N., Monatsh. Chem. 103, 1496 (1972).
- 181. Katscher, H., and Hahn, H., Naturwissenschaften 53, 361 (1966).

- 182. Keppert, D. L., "The Early Transition Metals," Academic Press, New York, 1972.
- 183. Kern, R., J. Phys. Chem. Solids 23, 249 (1962).
- 184. Kikuchi, A., Oka, Y., and Sawaguchi, E., J. Phys. Soc. Jpn. 23, 337 (1967).
- 185. Kirilenko, V. V., and Dembovskii, S. A., Fiz. Khim. Stekla 1, 225 (1975).
- 186. Kirillovich, E. V., Mater. Vses. Nauchn. Stud. Konf. Khim., 13th p. 27 (1975).
- 187. Klazar, J., and Horak, J., Collect. Czech. Chem. Commun. 33, 973 (1968).
- 188. Kniep, R., Mootz, D., and Rabenau, A., Z. Anorg. Allg. Chem. 422, 17 (1976).
- 189. Köhler, K., and Breitinger, D., Naturwissenschaften 61, 684 (1974).
- 190. Kolomiets, B. T., Phys. Status Solidi 7, 359, 713 (1964).
- 191. Kozakova, M., Horak, J., and Klikorka, J., Z. Chem. 6, 431 (1966).
- 192. Krämer, V., J. Appl. Crystallogr. 6, 499 (1973).
- 193. Krämer, V., Z. Naturforsch., Teil B 29, 688 (1974).
- 194. Krämer, V., Z. Naturforsch., Teil B 31, 1542 (1976).
- 195. Krebs, H., "Fundamentals of Inorganic Crystal Chemistry," McGraw-Hill, London, 1968.
- 196. Krebs, B., Z. Anorg. Allg. Chem. 396, 137 (1973).
- 197. Krebs, B., Buss, B., and Altena, D., Z. Anorg. Allg. Chem. 386, 257 (1971).
- 198. Kulakov, M. P., and Sokolovskaya, Zh.D., Inorg. Mater. 7, 1282 (1971).
- 199. Kuliev, A. A., Gadzhiev, S. M., Bakhyshov, R. G., and Khudiev, Kh. G., Izv. Akad. Nauk Azerb. SSR, Ser. Fiz.-Tekh. Mat. Nauk p. 126 (1970).
- Kuliev, A. A., Gadzhiev, S. M., Filatova, S. I., Suleimanova, D. M., and Zaidova, G. A., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 14, 1619 (1971).
- Kulieva, S. A., and Kuliev, A. A., Uch. Zap. Azerb. Gos. Univ. Ser. Khim. Nauk p. 38 (1974).
- 202. Kulieva, S. A., Kuliev, A. A., and Gadzhiev, S. M., Azerb. Khim. Zh. p. 131 (1974).
- 203. Lenher, V., J. Am. Chem. Soc. 23, 680 (1902).
- 204. Leonova, T. M., and Sviridov, V. V., Vestsi Akad. Navuk B. SSR, Ser. Khim. Navuk p. 40 (1966).
- 205. Leonova, T. M., and Sviridov, V. V., Inorg. Mater. 5, 1016 (1969).
- 206. Leonova, T. M., and Sviridov, V. V., Vestn. Beloruss. Univ. 2, 23 (1970).
- Leonova, T. M., and Sviridov, V. V., Fotokhim. Radiats.-Khim. Protsessy Vodn. Rastvorakh. Tverd. Telakh. p. 46 (1970).
- Levayer-Cauquais, C., Thesis, University of Nantes, Nantes Impr. Fac. Sci. (s.d.) 1971.
- 209. Liang, C. C., in "Fast Ion Transport in Solids" (W. van Gool, ed.), pp. 19-31. North-Holland Publ., Amsterdam, 1973.
- 210. Loginova, M. V., and Andreev, Yu. V., Inorg. Mater. 6, 1661 (1970).
- 211. Malkova, T. I., and Latypov, Z. M., Inorg. Mater. 10, 1057 (1974).
- Malkova, T. I., and Latypov, Z. M., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol. 17, 933 (1974).
- 213. Maneglier-Lacordaire, S., Rivet, J., and Flahaut, J., Ann. Chim. (Paris) 10, 291 (1975).
- 214. Marchenko, V. I., Gavrilenko, N. V., Moik, N. B., and Zhornovyi, I. V., Pishch. Promst. Kaz. Mezhved. Resp. Nauchno Tekh. Sb. p. 53 (1974).
- 215. Marcoll, J. D., Thesis, Stuttgart, 1975.
- Marcoll, J. D., Mootz, D., Rabenau, A., and Wunderlich, H., Eur. Crystallogr. Meet. 2nd p. 247 (1974).
- Marcoll, J. D., Rabenau, A., Mootz, D., and Wunderlich, H., Rev. Chim. Miner. 11, 607 (1974).
- 218. Marinkovic, V., Pejovski, S., and Vene, N., J. Cryst. Growth 44, 615 (1978).

- 219. Mariolacos, K., Acta Crystallogr., Sect. B 32, 1947 (1976).
- Masuda, Y., Sakata, K., Hasegawa, S., Ohara, G., Wada, M., and Nishizawa, M., Jpn. J. Appl. Phys. 8, 692 (1969).
- 221. Matyas, M., and Horak, J., Phys. Status Solidi A 36, K137 (1976).
- Mazhara, A. P., Opalovskii, A. A., Fedorov, V. E., and Kirik, S. D., Russ. J. Inorg. Chem. 22, 991 (1977).
- 223. Meerschaut, A., Palvadeau, P., and Rouxel, J., J. Solid State Chem. 20, 21 (1977).
- 224. Merz, W. J., Festkörperprobleme 4, 101 (1965).
- 225. Miehe, G., and Kupcik, V., Naturwisschenschaften 58, 219 (1971).
- 226. Mininzon, Yu. M., Popolitov, V. I., and Lobachev, A. N., Sov. Phys. Crystallogr. 22, 717 (1977).
- 227. Molnar, B., Johannes, R., and Haas, W., Bull. Am. Phys. Soc. 10, 109 (1965).
- 228. Mooser, E., and Pearson, W. B., J. Phys. Chem. Solids 7, 65 (1958).
- Mootz, D., Rabenau, A., Wunderlich, H., and Rosenstein, G., J. Solid State Chem. 6, 583 (1973).
- 230. Moritani, T., Kuchitsu, K., and Morino, Y., Inorg. Chem. 10, 344 (1971).
- 231. Morozov, I. S., and Li Ch'ih-fa, Russ. J. Inorg. Chem. 8, 878 (1963).
- 232. Mott, N. F., in "Amorphous and Liquid Semiconductors" (W. E. Spear, ed.), pp. 497 –503. University of Edinburgh, Edinburgh, 1977.
- 233. Nakamura, S., Takei, K., and Mizuno, K., Radioisotopes 18, 423 (1969).
- 234. Nako, K., and Balkanski, M., Phys. Rev. B 8, 5759 (1973).
- 235. Nassau, K., Shiever, J. W., and Kowalchik, M., J. Cryst. Growth 7, 237 (1970).
- 236. Neels, H., and Schmitz, W., Krist. Tech. 3, x85 (1968).
- 237. Nejezehleb, K., and Horak, J., Czech. J. Phys. 18, 138 (1968).
- 238. Nejezehleb, K., Turjanica, I. D., and Horak, J., Collect. Czech. Chem. Commun. 33, 674 (1968).
- 239. Nguyen-Huy-Dung, and Thevet, F., Acta Crystallogr., Sect. B 32, 1108 (1976).
- 240. Nguyen-Huy-Dung, and Thevet, F., Acta Crystallogr., Sect. B 32, 1112 (1976).
- 241. Nitsche, R., Fortschr. Mineral. 44, 231 (1967).
- 242. Nitsche, R., Mater. Res. Bull. 7, 679 (1972).
- 243. Nitsche, R., and Merz, W. J., J. Phys. Chem. Solids 13, 154 (1960).
- 244. Nitsche, R., Roetschi, H., and Wild, P., Appl. Phys. Lett. 4, 210 (1964).
- 245. Noval'kovskii, N. P., Belotskii, D. P., Gavrilenko, N. V., and Chervenyuk, G. I., Tezisy Dokl. Vses. Konf. Kristallokhim. Intermet. Soedin., 2nd (R. M. Rykhal, ed.), p. 173. Lvov, USSR, 1974.
- 246. Novoselova, A. V., Odin, I. N., and Popovkin, B. A., Inorg. Mater. 2, 1193 (1966).
- 247. Novoselova, A. V., Odin, I. N., and Popovkin, B. A., Russ. J. Inorg. Chem. 14, 1402 (1969).
- 248. Novoselova, A. V., Odin, I. N., and Popovkin, B. A., Inorg. Mater. 6, 113 (1970).
- 249. Novoselova, A. V., Odin, I. N., and Popovkin, B. A., Inorg. Mater. 6, 224 (1970).
- 250. Novoselova, A. V., Odin, I. N., and Popovkin, B. A., Inorg. Mater. 6, 332 (1970).
- 251. Novoselova, A. V., Odin, I. N., Trifonov, V. A., and Popovkin, B. A., Inorg. Mater. 3, 1827 (1967).
- 252. Novoselova, A. V., Odin, I. N., Valitova, N. R., and Popovkin, B. A., *Inorg. Mater.* 4, 680 (1968).
- 253. Novoselova, A. V., Todriya, M. K., Odin, I. N., and Popovkin, B. A., Inorg. Mater. 7, 437 (1971).
- 254. Novoselova, A. V., Todriya, M. K., Odin, I. N., and Popovkin, B. A., Inorg. Mater. 7, 1125 (1971).

- Novoselova, A. V., Zlomanov, V. P., Popovkin, B. A., and Tananaeva, O. I., Eur. Conf. Cryst. Growth, 1st, Abstract Book, Post Deadline Paper, Zürich, 1976.
- 256. Odin, I. N., Popovkin, B. A., and Novoselova, A. V., Inorg. Mater. 6, 424 (1970).
- 257. Oka, Y., Kikuchi, A., Mori, T., and Sawaguchi, E., J. Phys. Soc. Jpn. 21, 405 (1966).
- 258. Omote, O., and Ito, K., Shinku Kagaku 13, 110 (1965).
- 259. Onopko, L. V., Onopko, V. V., Chepur, D. V., Dovgoshei, N. I., Turyanitsa, I. D., and Zayachkovskaya, N. F., Inorg. Mater. 10, 975 (1974).
- 260. Opalovskii, A. A., and Fedorov, V. E., Dokl. Chem. 176, 810 (1967).
- Opalovskii, A. A., Fedorov, V. E., and Khaldoyanidi, K. A., Dokl. Chem. 182, 907 (1968).
- Opalovskii, A. A., Fedorov, V. E., and Lobkov, E. U., Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk p. 144 (1971).
- Opalovskii, A. A., Fedorov, V. E., and Lobkov, E. U., Russ. J. Inorg. Chem. 16, 790 (1971).
- Opalovskii, A. A., Fedorov, V. E., Lobkov, E. U., and Erenburg, B. G., Russ. J. Inorg. Chem. 16, 1685 (1971).
- Opalovskii, A. A., Fedorov, V. E., Mazhara, A. P., and Cheremisina, I. M., Russ. J. Inorg. Chem. 17, 1510 (1972).
- 266. Palvadeau, P., and Rouxel, J., Bull. Soc. Chim. Fr. p. 2698 (1967).
- 267. Penney, G. J., and Sheldrick, G. M., Acta Crystallogr., Sect. B 26, 2092 (1970).
- 268. Penney, G. J., and Sheldrick, G. M., J. Chem. Soc. A p. 1100 (1971).
- 269. Perrin, C., Chevrel, R., and Sergent, M., C. R. Acad. Sci., Ser. C 280, 949 (1975).
- 270. Perrin, C., Chevrel, R., and Sergent, M., C. R. Acad. Sci., Ser. C 281, 23 (1975).
- 271. Perrin, C., Perrin, A., and Prigent, J., Bull. Soc. Chim. Fr. p. 3086 (1972).
- 272. Perrin, C., Sergent, M., and Prigent, J., C. R. Acad. Sci., Ser. C 277, 465 (1973).
- 273. Perrin, C., Sergent, M., Le Traon, F., and Le Traon, A., J. Solid State Chem. 25, 197 (1978).
- 274. von der Pfordten, O., Justus Liebigs Ann. Chem. 234, 257 (1886).
- 275. Pohl, S., Angew. Chem. Int. Ed. Engl. 15, 162 (1976).
- 276. Poleck, T., and Goercki, C., Ber. Dtsch. Chem. Ges. 21, 2412 (1888).
- 277. Poltavtsev, Yu. G., Inorg. Mater. 11, 1492 (1975).
- 278. Poltavtsev, Yu. G., and Pozdnyakova, V. M., Inorg. Mater. 9, 766 (1973).
- 279. Popolitov, V. I., Sov. Phys. Crystallogr. 14, 312 (1969).
- 280. Popolitov, V. I., and Litvin, B. N., Sov. Phys. Crystallogr. 13, 483 (1968).
- 281. Popolitov, V. I., and Litvin, B. N., Sov. Phys. Crystallogr. 15, 1116 (1970).
- 282. Popolitov, V. I., and Litvin, B. N., in "Studies in Soviet Science: Crystallization Processes under Hydrothermal Conditions" (A. N. Lobachev, ed.), pp. 57-72. Consultants Bureau, New York, 1973.
- 283. Popolitov, V. I., Litvin, B. N., and Lobachev, A. N., Phys. Status Solidi A 3, κ1 (1970).
- 284. Popolitov, V. I., and Lobachev, A. N., Inorg. Mater. 8, 1082 (1972).
- 285. Popolitov, V. I., and Lobachev, A. N., Inorg. Mater. 8, 1389 (1972).
- 286. Popolitov, V. I., and Lobachev, A. N., Inorg. Mater. 9, 191 (1973).
- Popolitov, V. I., Zver'kova, O. N., and Lobachev, A. N., J. Appl. Chem. USSR 47, 1533 (1974).
- 288. Puff, H., Angew. Chem. 75, 681 (1963).
- 289. Puff, H., Harpain, A., and Hoop, K. P., Naturwissenschaften 53, 274 (1966).
- 290. Puff, H., and Kohlschmidt, R., Naturwissenschaften 49, 299 (1962).
- 291. Puff, H., and Küster, J., Naturwissenschaften 49, 299 (1962).

- 292. Puff, H., and Küster, J., Naturwissenschaften 49, 464 (1962).
- 293. Puga, G. D., Kovach, D. Sh., Turyanitsa, I. D., Borets, A. N., and Chepur, D. V., Ukr. Fiz. Zh. (Russ. Ed.) 16, 276 (1971).
- 294. Puga, G. D., Puga, P. P., Maksimets, V. V., Borets, A. N., Groshik, I. I., Bercha, D. M., and Chepur, D. V., Ferroelectrics 6, 111 (1974).
- 295. Quinn, R. K., and Johnson, R. T., J. Non-Cryst. Solids 7, 53 (1972).
- 296. "Problems of Nonstoichiometry" (A. Rabenau, ed.). North-Holland Publ., Amster-dam, 1970.
- 297. Rabenau, A., in "Crystal Growth: an Introduction" (P. Hartmann, ed.), pp. 198–209. North-Holland Publ., Amsterdam, 1973.
- 298. Rabenau, A., in "Die feste Materie" (L. Genzel, ed.), pp. 223-246. Umschau Verlag, Frankfurt/Main, 1973.
- 299. Rabenau, A., Rost Krist. 13, (1979), in press.
- 300. Rabenau, A., and Rau, H., Inorg. Synth. 14, 160 (1973).
- 301. Rabenau, A., and Rau, H., Phillips Techn. Rev. 30, 89 (1969).
- 302. Rabenau, A., and Rau, H., Z. Anorg. Allg. Chem. 369, 295 (1969).
- 303. Rabenau, A., Rau, H., and Rosenstein, G., Naturwissenschaften 55, 82 (1968).
- 304. Rabenau, A., Rau, H., and Rosenstein, G., Naturwissenschaften 56, 137 (1969).
- 305. Rabenau, A., Rau, H., and Rosenstein, G., Angew. Chem. Int. Ed. Engl. 8, 145 (1969).
- 306. Rabenau, A., Rau, H., and Rosenstein, G., Solid State Commun. 7, 1281 (1969).
- 307. Rabenau, A., Rau, H., and Rosenstein, G., Z. Anorg. Allg. Chem. 374, 43 (1970).
- 308. Rabenau, A., Rau, H., and Rosenstein, G., J. Less-Common Met. 21, 395 (1970).
- 309. Rabenau, A., Rau, H., and Rosenstein, G., Monatsh. Chem. 102, 1425 (1971).
- Raghava Rao, B. S. V., and Watson, H. E., J. Indian Inst. Sci., Sect. A 12, 17 (1929);
 J. Phys. Chem. 32, 1354 (1928).
- 311. Rannou, J. P., and Sergent, M., C. R. Acad. Sci., Ser. C 265, 734 (1967).
- 312. Rau, H., and Rabenau, A., Solid State Commun. 5, 331 (1967).
- 313. Ray, P. C., J. Chem. Soc. 111, 101 (1917).
- 314. Reisman, A., and Berkenblit, M., J. Electrochem. Soc. 109, 1111 (1962).
- 315. Reuter, B., and Hardel, K., Angew. Chem. 72, 138 (1960).
- 316. Reuter, B., and Hardel, K., Naturwissenschaften 48, 161 (1961).
- 317. Reuter, B., and Hardel, K., Z. Anorg. Allg. Chem. 340, 158 (1965).
- 318. Reuter, B., and Hardel, K., Z. Anorg. Allg. Chem. 340, 168 (1965).
- 319. Reuter, B., and Hardel, K., Ber. Bunsenges. Phys. Chem. 70, 82 (1966).
- 320. Rice, D. A., Coord. Chem. Rev. 25, 199 (1978).
- 321. Rigin, V. I., and Batsanov, S. S., Russ. J. Inorg. Chem. 10, 950 (1965).
- 322. Rijnsdorp, J., Int. Conf. Solid Comp. Trans. Elements, 5th, Extended Abstracts, p. 45. Upplands Grafiska AB, Uppsala, 1976.
- 323. Rodionov, Yu. I., Klokman, V. R., and Myakishev, K. G., Russ. J. Inorg. Chem. 17, 440 (1972).
- 324. Roos, G., Eulenberger, G., and Hahn, H., Naturwissenschaften 59, 363 (1972).
- 325. Roos, G., Eulenberger, G., and Hahn, H., Z. Anorg. Allg. Chem. 396, 284 (1973).
- 326. Rose, H., Ann. Phys. 13, 59 (1828).
- 327. Rouxel, J., Ann. Chim. (Paris) 7, 49 (1962).
- 328. Rouxel, J., and Palvadeau, P., Bull. Soc. Chim. Fr. p. 2044 (1966).
- 329. Ruff, O., and Neumann, F., Z. Anorg. Allg. Chem. 128, 81 (1923).
- 330. Safonov, V. V., Chernykh, S. M., and Korshunov, B. G., Russ. J. Inorg. Chem. 23, 271 (1978).

- 331. Safonov, V. V., Chernykh, S. M., Korshunov, B. G., and Ksenzenko, V. I., Russ. J. Inorg. Chem. 22, 438 (1977).
- Safonov, V. V., Vasilishcheva, I. V., and Korshunov, B. G., Russ. J. Inorg. Chem. 16, 1232 (1971).
- Savchenko, N. D., Dovgoshei, N. I., Turyanitsa, I. D., Golovei, M. I., Chepur, D. V., and Semrad, E. E., Fiz. Khim. Tverd. Tela 6, 129 (1975).
- 334. Savigny, N., Adolphe, C., Zalkin, A., and Templeton, D. H., Acta Crystallogr., Sect. B 29, 1532 (1973).
- 335. Savigny, N., Laruelle, P., and Flahaut, J., Acta Crystallogr., Sect. B 29, 345 (1973).
- 336. Schäfer, H., "Chemical Transport Reactions," Academic Press, New York, 1964.
- 337. Schäfer, H., J. Cryst. Growth 9, 17 (1971).
- 338. Schäfer, H., in "Crystal Growth: an Introduction" (P. Hartman, ed.), pp. 143-151.
 North-Holland Publ., Amsterdam, 1973.
- 339. Schäfer, H., and Beckmann, W., Z. Anorg. Allg. Chem. 347, 225 (1966).
- 340. Schäfer, H., and von Schnering, H. G., Angew. Chem. 76, 833 (1964).
- 341. Schmidt, C., and Gmelin, E., Solid State Commun. 21, 987 (1977).
- 342. Schmidt, C., Gmelin, E., and van Alpen, U., Nuovo Cimento Soc. Ital. Fis. B 38, 206 (1977).
- 343. Schmidt, M., and Siebert, W., Angew. Chem. Int. Ed. Engl. 3, 637 (1964).
- 344. Schmidt, M., and Siebert, W., Z. Anorg. Allg. Chem. 345, 87 (1966).
- 345. Schmidt, M., and Siebert, W., Angew. Chem. Int. Ed. Engl. 5, 597 (1966).
- 346. Schmidt, M., Siebert, W., and Gast, E., Z. Naturforsch., Teil B 22, 557 (1967).
- 347. von Schnering, H. G., and Beckmann, W., Z. Anorg. Allg. Chem. 347, 231 (1966).
- 348. Scholz, H., Phillips Techn. Rev. 28, 316 (1967).
- 349. Scholz, H., Acta Electron. 17, 69 (1974).
- Scholz, H., and Kluckow, R., in "Crystal Growth" (H. S. Peiser, ed.), pp. 475-482.
 Pergamon, Oxford, 1967.
- 351. Schumb, W. C., and Bernard, W. J., J. Am. Chem. Soc. 77, 862 (1955).
- 352. Scott, J. F., Rev. Mod. Phys. 46, 83 (1974).
- 353. Sergeevna, G. E., Mater. Vses. Nauchn. Stud. Konf.: Khim., 13th. p. 26 (1975).
- 354. Sergent, M., Fischer, O., Decroux, M., Perrin, C., and Chevrel, R., J. Solid State Chem. 22, 87 (1977).
- 355. Sfez, G., and Adolphe, C., Bull. Soc. Fr. Mineral. Cristallogr. 96, 37 (1973).
- Sharma, K. M., Anand, S. K., Multani, R. K., and Jain, B. D., Chem. Ind. (London) p. 1556 (1969).
- Simon, A., von Schnering, H. G., and Schäfer, H., Z. Anorg. Allg. Chem. 355, 295 (1967).
- 358. Simon, G., and Zeller, G. R., J. Phys. Chem. Solids 35, 187 (1974).
- 359. Singleton, D. L., and Stafford, F. E., Inorg. Chem. 11, 1208 (1972).
- 360. Sinha, K. P., and Biswas, A. B., J. Chem. Phys. 23, 404 (1955).
- 361. Sinitsyna, S. M., Khlebodarov, V. G., and Bukhtereva, N. A., Russ. J. Inorg. Chem. 20, 1267 (1975).
- 362. Smith, E. F., and Oberholtzer, V., Z. Anorg. Allg. Chem. 5, 63 (1894).
- 363. Solvay & Cie., Netherlands Patent 288,255 (May 11, 1964; Appl. Jan. 28, 1963).
- 364. Stork-Blaisse, B. A., and Romers, C., Acta Crystallogr., Sect. B 27, 386 (1971).
- 365. Strähler, A., and Bachran, F., Ber. Dtsch. Chem. Ges. 44, 2906 (1911).
- Street, G. B., Bingham, R. L., Crowley, J. I., and Kuyper, J., J. Chem. Soc., Chem. Commun. p. 464 (1977).
- 367. A. J. C. Wilson, ed., "Structure Reports," Vol. 13, p. 206. Oosthoek, Utrecht, 1954.

- 368. Tai, H., and Hori, S., Nippon Kinzoku Gakkaishi 40, 722 (1976).
- 369. Takahashi, T., Kuwabara, K., Yamamoto, O., and Watanabe, S., Denki Kagaku 37, 717 (1969).
- 370. Takahashi, T., and Yamamoto, O., Denki Kagaku 32, 610 (1964).
- 371. Takahashi, T., and Yamamoto, O., Denki Kagaku 32, 664 (1964).
- 372. Takahashi, T., and Yamamoto, O., Denki Kagaku 33, 346 (1965).
- 373. Takahashi, T., Yamamoto, O., and Mori, H., Denki Kagaku 35, 181 (1967).
- 374. Takahashi, T., and Yamamoto, O., U.S. Patent 3,558,357 (Jan. 26, 1971); Jpn. Appl. Mar. 30, 1968.
- 375. Takei, K., Bull. Chem. Soc. Jpn. 28, 403 (1955).
- 376. Takei, K., Bull. Chem. Soc. Jpn. 28, 406 (1955).
- 377. Takei, K., Bull. Chem. Soc. Jpn. 28, 408 (1955).
- 378. Takei, K., Nippon Kagaku Zasshi 77, 830 (1956).
- 379. Takei, K., Nippon Kagaku Zasshi 77, 965 (1956).
- 380. Takei, K., and Hagiwara, H., Radioisotopes 24, 715 (1975).
- 381. Takei, K., and Hagiwara, H., Bull. Chem. Soc. Jpn. 49, 1425 (1976).
- 382. Takei, K., Hagiwara, H., and Tanaka, H., Bull. Chem. Soc. Jpn. 50, 1341 (1977).
- 383. Tananaeva, O. I., Novoselova, A. V., and Kul'bachevska, E. V., Inorg. Mater. 13, 434 (1977).
- 384. Taraskin, S. A., Lyakhovitskaya, V. A., and Ivanov-Shits, A. K., Sov. Phys. Crystallogr. 17, 597 (1972).
- 385. Thevet, F., Nguyen, H. D., and Dagron, C., C. R. Acad. Sci., Ser. C 275, 1279 (1972).
- 386. Thevet, F., Nguyen, H. D., and Dagron, C., C. R. Acad. Sci. Ser. C 276, 1787 (1973).
- 387. Thevet, F., Nguyen, H. D., and Dagron, C., C. R. Acad. Sci. Ser. C 281, 865 (1975).
- 388. Thevet, F., Nguyen, H. D., Dagron, C., and Flahaut, J., J. Solid State Chem. 18, 175 (1976).
- 389. Thiele, G., Köhler-Degner, M., Wittmann, K., and Zoubek, G., Angew. Chem. Int. Ed. Engl. 17, 852 (1978).
- 390. Tomokiyo, A., Okada, T., and Kawano, S., Jpn. J. Appl. Phys. 16, 291 (1977).
- 391. Tomura, H., and Mori, T., J. Phys. Soc. Jpn. 19, 1247 (1964).
- 392. Trifonov, V. A., Dernovskii, V. I., Popovkin, B. A., Lyakhovitskaya, V. A., Belousov, V. I., and Novoselova, A. V., Russ. J. Inorg. Chem. 48, 458 (1974).
- 393. Tronev, V. G., Bekhtle, G. A., and Davidyants, S. B., Tr. Akad. Nauk Tadzh. SSR 84, 105 (1958).
- 394. Truthe, W., Z. Anorg. Chem. 76, 161 (1912).
- 395. Turjanica, I. D., Horak, J., and Kozakova, M., Collect. Czech. Chem. Commun. 33, 300 (1968).
- 396. Turjanica, I. D., Koperles, V. M., and Chepur, D. V., Fiz. Elektron. (Lvov) 8, 30 (1974).
- 397. Turjanica, I. D., Olekseyuk, I. D., and Kozmanko, I. I., Inorg. Mater. 9, 1275 (1973).
- 398. Turjanica, I. D., Zayachkovskii, N. F., and Kozmanko, I. I., *Inorg. Mater.* 10, 1617 (1974).
- Turyanitsa, I. D., Zhdankin, A. P., Dovgoshei, N. I., Gryadil, I. A., and Chepur, D. V., Poluprovodn. Tekh. Mikroelektron. p. 82 (1974).
- Urazov, G. G., and Celidse, L. A., *Izv. Akad. Nauk SSSR*, *Sekt. Fiz. Khim. Anal.* 13, 263 (1940).
- Urazov, G. G., and Sokolova, M. A., Izv. Akad. Nauk SSSR, Sekt. Fiz. Khim. Anal. 14, 317 (1941).
- Valitova, N. R., Aleshin, V. A., Popovkin, B. A., and Novoselova, A. V., Inorg. Mater. 12, 194 (1976).

- Valitova, N. R., Popovkin, B. A., Novoselova, A. V., and Aslanov, L. A., Inorg. Mater. 9, 1960 (1973).
- 404. Velikanov, A. A., and Zinchenko, V. F., Sov. Electrochem. 11, 1733 (1975).
- 405. Walton, R. A., in "Progress in Inorganic Chemistry" (S. J. Lippard, ed.), Vol. 16, pp. 1-226. Wiley (Interscience), New York, 1972.
- 406. Weissenstein, J., and Horak, J., Czech. J. Phys. 24, 235 (1974).
- 407. Wells, A. F., "Structural Inorganic Chemistry," London and New York, 1975. 4th ed., Oxford Univ. Press (Clarendon).
- 408. Whitmore, D. H., J. Cryst. Growth 39, 160 (1977).
- 409. Wiberg, E., and Sturm, W., Z. Naturforsch., Teil B 8, 529 (1953).
- 410. Wiberg, E., and Sturm, W., Z. Naturforsch., Teil B 10, 112 (1955).
- 411. Wiberg, E., and Sturm, W., Angew. Chem. 67, 483 (1955).
- 412. Winterhager, H., and Kammel, R., Z. Erzbergbau Metallhuettenwes. 9, 97 (1956).
- 413. Wright, D. A., and Penfold, B. R., Acta Crystallogr. 12, 455 (1959).
- 414. Yamamoto, O., and Takahashi, T., Denki Kagaku 34, 833 (1966).
- 415. Yushina, L. D., Karpachev, S. V., and Ovchinnikov, Yu. M., Sov. Electrochem. 6, 1344 (1970).
- 416. Yushina, L. D., Karpachev, S. V., and Ovchinnikov, Yu. M., Sov. Electrochem. 6, 1379 (1970).
- 417. Zachariasen, W. H., Acta Crystallogr. 2, 288 (1949).
- Zadarozhnaya, L. A., Lyachovitskaya, V. A., Givargizov, E. I., and Belyaev, L. M., J. Cryst. Growth 41, 61 (1977).
- Zaidova, G. A., Kuliev, A. A., and Gadzhiev, S. M., Uch. Zap. Azerb. Gos. Univ. Ser. Khim. Nauk p. 51 (1973).

APPENDIX REFERENCES

- 420. Bercha, D. M., Zayachkovskii, M. P., and Zayachkovskaya, N. F., Sov. Phys. Solid State 20, 1834 (1978).
- 421. Bhalla, A. S., Spear, K. E., and Cross, L. E., Mater. Res. Bull. 14, 423 (1979).
- 422. Bullett, D. W., J. Phys. C, in press.
- 423. Greene, R. L., Kwak, J. F., and Fuller, W. W., J. Phys., Colloq. (Orsay) 6, 1401 (1978).
- 424. Haendler, H. M., and Carkner, P. M., J. Solid State Chem. 29, 35 (1979).
- 425. Ishikawa, K., Tomoda, W., and Toyoda, K., Shizuoka Daigaku Denshi Kogaku Kenkyosho Kenkyu Hokoku 13, 17 (1978).
- 426. Krämer, V., Acta Crystallogr., Sect. B 35, 139 (1979).
- 427. Magistris, A., Chiodelli, G., and Schiraldi, A., Z. Phys. Chem. Neue Folge 112, 251 (1978).
- 428. Nguyen Tat Dih, Lostak, P., and Horak, J., Czech. J. Phys., Sect. B 28, 1297 (1978).
- Popolitov, V. I., Lobachev, A. N., Peskin, V. F., and Mininzon, Yu. M., Ferroelectrics 21, 421 (1978).
- 430. Razzini, G., Lazzari, M., and Scrosati, B., Electrochim. Acta 23, 805 (1978).
- 431. Rijnsdorp, J., and Jellinek, F., J. Solid State Chem. 28, 149 (1979).
- 432. Tsigdinos, G. A., In "Topics in Current Chemistry" (F. L. Boschke, ed.), Vol. 76, pp. 65-105. Springer-Verlag, New York, 1978.
- 433. Wichelhaus, W., to be published.
- 434. Kniep, R., and Wilms, A., Mater. Res. Bull. 15, in press.